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Preface

Surely the title makes it clear that this is a book about it, but you
may be wondering how a book could be written about just one
number. We will hope to convince you throughout this book that it
is no ordinary number. Rather, it is special and comes up in the
most unexpected places. You will also find how useful this number
is throughout mathematics. We hope to present it to you in a very
"reader-friendly" way—mindful of the beauty that is inherent in the
study of this most important number.

You may remember that in the school curriculum the value that
it took on was either 3.14, 3 or For a student's purposes, this
was more than adequate. It might have even been easier to simply
use it = 3. But what is it? What is the real value of it? How do we
determine the value of it? How was it calculated in ancient times?
How can the value be found today using the most modern tech-
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10 Preface

nology? How might it be used? These are just some of the questions
that we will explore as you embark on the chapters of this book.

We will begin our introduction of it by telling you what it is and
roughly where it came from. Just as with any biography (and this
book is no exception), we will tell you who named it and why, and
how it grew up to be what it is today. The first chapter tells you
what it essentially is and how it achieved its current prominence.

In chapter 2 we will take you through a brief history of the evo-
lution of it. This history goes back about four thousand years. To
understand how old the concept of it is, compare it to our number
system, the place value decimal system, that has only been used in
the Western world for the past 802 years!' We will recall the dis-
covery of the it ratio as a constant and the many efforts to determine
its value. Along the way we will consider such diverse questions as
the value of it as it is mentioned in the Bible and its value in con-
nection with the field of probability. Once the computer enters the
chase for finding the "exact" value of it, the story changes its com-
plexion. Now it is no longer a question of finding the mathematical
solution, but rather how fast and how accurate can the computer be
in giving us an ever-greater accuracy for the value of it.

Now that we have reviewed the history of the development of the

value of it, chapter 3 provides a variety of methods for arriving at its
value. We have chosen a wide variety of methods, some precise,
some experimental, and some just good guessing. They have been
selected so that the average reader can not only understand them but
also independently apply them to generate the value of it. There are
many very sophisticated methods to generate the value of it that are
well beyond the scope of this book. We have the general reader in
mind with the book's level of difficulty.

L The first publication in western Europe, where the Arabic numerals appeared, was
Fibonacci's book Liher ahaci in 1202.
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With all this excitement through the ages centered on it, it is no
wonder that it has elicited a cuitlike following in pursuit of this eva-
sive number. Chapter 4 centers on activities and findings by math-
ematicians and math hobbyists who have explored the value of it
and related fields in ways that the ancient mathematicians would
never have dreamed of. Furthermore, with the advent of the com-
puter, they have found new avenues to explore. We will look at
some of these here.

As an offshoot of chapter 4, we have a number of curious phe-
nomena that focus on the value and concept of it. Chapter 5 exhibits

some of these curiosities. Here we investigate how it relates to other
famous numbers and to other seemingly unrelated concepts such as
continued fractions. Again, we have limited our presentation to
material that would require no more mathematical knowledge than
that of high school mathematics. Not only will you be amused by
some of the it equivalents, but you may even be inspired to develop
your own versions of them.

Chapter 6 is dedicated to applications of it. We begin this chapter
with a discussion of another figure that is very closely related to the
circle but isn't round. This Reuleaux triangle is truly a fascinating
example of how it just gets around to geometry beyond the circle.
From here we move on to some circle applications. You will see how

it is quite ubiquitous—it always comes up! There are some useful
problem-solving techniques incorporated into this chapter that will
allow you to look at an ordinary situation from a very different point
of view—which may prove quite fruitful.

In our final chapter, we present some astonishing relationships in-
volving it and circles. The situation that we will present regarding a
rope placed around the earth will surely challenge everyone's intu-
ition. Though a relatively short chapter, it will surely surprise you.

It is our intention to make the general reader aware of the
myriad of topics surrounding it that contribute to making mathe-
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matics beautiful. We have provided a bibliography of this famous
number and many of its escapades through the fields of mathe-
matics. Perhaps you will feel motivated to pursue some of these
aspects of it further, and some of you may even join the ranks of the
it enthusiasts.

Alfred S. Posamentier
and Ingmar Lehmann

April 18, 2004



Chapter 1

What Is ic?

Introduction to it

This is a book about the mysterious number we call it (pronounced
"pie," while in much of Europe it is pronounced "pee"). What most
people recall about it is that it was often mentioned in school mathe-
matics. Conversely, one of the first things that comes to mind, when
asked what we learned in mathematics during our school years, is
something about it. We usually remember the popular formulas
attached to it, such as 2itr or itr2. (To this day, there are adults who
love to repeat the silly response to itr2: "No, pie are round!"). But do
we remember what these formulas represent or what this thing called
it is? Usually not. Why, then, write a book about it? It just so happens
that there is almost a cultlike following that has arisen over the con-
cept of it. Other books have been written about it. Internet Web sites

13



It

report about its "sightings," clubs meet to discuss its properties, and
even a day on the calendar is set aside to celebrate it, this being
March 14, which coincidentally just happens also to be Albert Ein-
stein's birthday (in 1879). You may be wondering how March 14 was
selected as it day. For those who remember the common value (3.14)
that it took on in the schools, the answer will become obvious.'

It surely comes as no surprise that the symbol it is merely a letter
in the Greek alphabet. While there is nothing special about this par-
ticular letter in the Greek alphabet, it was chosen, for reasons that
we will explore later, to represent a ratio that harbors curious
intrigue and stories of all kinds. It found its way from a member of
the Greek alphabet to represent a most important geometric constant
and subsequently has unexpectedly appeared in a variety of other
areas of mathematics. It has puzzled generations of mathematicians
who have been challenged to define it, determine its value, and
explain the many related areas in which it sometimes astoundingly
appears. Ubiquitous numbers, such as it, make mathematics the
interesting and beautiful subject that many find it to be. It is our
intent to demonstrate this beauty through an acquaintance with it.

Aspects of it

Our aim here is not to decipher numerous complicated equations, to
solve difficult problems, or to try to explain the unexplainable.
Rather, it is to explore the beauty and even playfulness of this
famous number, it, and to show why it has inspired centuries of
mathematicians and math enthusiasts to further pursue and investi-
gate its related concepts. We will see how it takes on unexpected
roles, comes up in the most unexpected places, and provides the

1. In the United States we write the date as 3/14.



Whatlsit? 15

never-ending challenge to computer specialists of finding ever-
more-accurate decimal approximations for the value of it. Attempts
at getting further accuracy of the value of it may at first seem sense-
less. But allow yourselves to be open to the challenges that have
intrigued generations of enthusiasts.

The theme of this book is understanding it and some of its most
beautiful aspects. So we should begin our discussion and explo-
ration of it by defining it. While for some people it is nothing more
than a touch of the button on a calculator, where then a particular
number appears on the readout, for others this number holds an
unimaginable fascination. Depending on size of the calculator's
display, the number shown will be

3.1415927,
3.141592654,
3.14159265359,
3.1415926535897932384626433832795, or even longer.

This push of a button still doesn't tell us what it actually is. We merely

have a slick way of getting the decimal value of it. Perhaps this is all
students need to know about it: that it represents a specific number that

might be useful to know. However, here students would be making a
colossal mistake to dismiss the importance of the topic, by just
focusing on the application of it in particular formulas and getting its
value automatically just by the push of a button.

The Symbol it

The symbol it is the sixteenth letter of the Greek alphabet, yet it has
gained fame because of its designation in mathematics. In the
Hebrew and the Greek languages of antiquity, there were no numer-
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ical symbols. Hence, the letters of the respective alphabets served
as numerical symbols. Since the Greek alphabet had only twenty-
four letters, though twenty-seven were needed, they used three let-
ters of Semitic origin, namely, F [digamma] (for 6), 9 [qoph] (for
90), and [san] (for 900).

The Greeks at the beginning of the fifth century BCE then used
the notation represented in the following table:2

a ö 1 0

1 2 3 4 5 6 7 8 9

1. K v o it 9
10 20 30 40 50 60 70 80 90

p 'U U X N' (0

100 200 300 400 500 600 700 800 900

,ö (, €) ,T.t ,0

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

Thus in the old Greek texts it was used to represent the number 80.
By coincidence, the Hebrew letter (pe) has the same value.

Recollections of it

Perhaps by coincidence or by some very loose associations, the letter

it was later chosen by mathematicians to represent a very important

constant value related to the circle. Remember, the circle is the most

symmetric plane geometric figure and one that goes back in history

to prehistoric times. Specifically, it was chosen to represent the ratio

2. A comma at the left indicates thousands. The ten thousands are indicated with an
M below the number symbol. Table from Georges Ifrah, Universal History of Numerals
(New York: Campus, 1986), p. 289.
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of the circumference of a circle to its diameter.3 This would be
expressed symbolically as it = where C represents the length of

the circumference and d represents the length of the diameter. The

diameter of a circle is twice the length of the radius, d = 2r, where r

is the length of the radius. If we substitute 2r for d, we get it =
which leads us to the famous formula for the circumference of a
circle: C = 2itr, an alternative of which is C = itd.

The other familiar formula containing it is that the area of a circle

is itr2. This formula is more complicated to establish than that for the
circumference of the circle, which followed directly from the defini-
tion of it.

Formula for the Area of a Circle

Let's consider a relatively simple "derivation" for the formula (A =
icr2) for the area of a circle with radius r. We begin by drawing a
convenient-size circle on a piece of cardboard. Divide the circle
(which consists of 360°) into sixteen equal arcs. This may be done
by marking off consecutive arcs of 22.5° or by consecutively
dividing the circle into two parts, then four parts, then bisecting
each of these quarter arcs, and so on.

3. A purist might ask: how do we know that this ratio is the same for all circles? We
will assume this constancy for now.
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The sixteen sectors we have constructed (shown above) are
then to be cut apart and placed in the manner shown in the figure
below.

Fig. 1-2

Fig. 1-1
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This placement suggests that we have a figure that approximates a

parallelogram.4 That is, were the circle cut into more sectors, then

the figure would look even more like a true parallelogram. Let us
assume it is a parallelogram. In this case, the base would have a
length of half the circumference of the original circle, since half of

the circle's arcs are used for each of the two sides of the approxi-
mate parallelogram. In other words, we formed something that
resembles a parallelogram where one pair of opposite sides are not

straight lines, rather they are circle arcs. We will progress as though

they were straight lines, realizing that we will have lost some accu-

racy in the process. The length of the base is C. Since C = 2itr,

the base length is, therefore, itr. The area of a parallelogram is equal

to the product of its base and altitude. Here the altitude is actually
the radius, r, of the original circle. Therefore, the area of the "par-
allelogram" (which is actually the area of the circle we just cut
apart) is (itr)(r) = itr2, which gives us the commonly known formula

for the area of a circle. For some readers this might be the first time

that the famous formula for the area of a circle, A = itr2, actually has

some real meaning.

The Square and the Circle

Without taking the reader's attention too far afield, it might also be
interesting to point out that it has the unique distinction of taking
the area of a square, whose side has the length of the radius of a
circle, and converting its area to that of the circle. It is the constant
value connector in this case. The area of the square (fig. 1-3) is r2
and, when multiplied by it, gives us the area of the circle: itr2.

4. A parallelogram is a quadrilateral (a four-sided polygon) with opposite sides parallel.
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The Value of it

Fig. 1-3

Now that we have an understanding of what it meant in the context
of these old familiar formulas, we shall explore what the actual
value is of this ratio it. One way to determine this ratio would be to
carefully measure the circumference of a circle and its diameter and
then find the quotient of these two values. This might be done with
a tape measure or with a piece of string. An extraordinarily careful
measurement might yield 3.14, but such accuracy is rare. As a
matter of fact, to exhibit the difficulty of getting this two-place
accuracy, imagine twenty-five people carrying out this measure-
ment experiment with different-size circular objects. Imagine then
taking the average of their results (i.e., each of their measured cir-
cumferences divided by their measured diameters). You would
likely be hard pressed to achieve the accuracy of 3.14.

You may recall that in school the commonly used value for it is

3.14 or Either is only an approximation. We cannot get the
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exact value of it. So how does one get a value for it? We will now

look at some of the many ingenious ways that mathematicians over

the centuries have tried to get ever-more-precise values for it. Some

are amusing; others are baffling. Yet most had significance beyond

just getting closer approximations of it.
One of the more recent attempts to get a closer approximation of

it took place in Tokyo. In his latest effort, in December 2002, Pro-
fessor Yasumasa Kanada (a longtime pursuer of it) and nine others at
the Information Technology Center at Tokyo University calculated
the value of it to 1.24 trillion decimal places, which is six times the
previously known accuracy, calculated in 1999. They accomplished
this feat with a Hitachi 5R8000 supercomputer, which is capable of
doing 2 trillion calculations per second. You may ask, why do we
need such accuracy for the value of it? We don't. The methods of cal-
culation are simply used to check the accuracy of the computer and
the sophistication of the calculating procedure (sometimes referred to

as an algorithm), that is, how accurate and efficient it is. Another way
of looking at this is how long will it take the computer to get an accu-
rate result? In the case of Dr. Kanada, it took his computer over six
hundred hours to do this record-setting computation.

It might be worthwhile to consider the magnitude of 1.24 tril-
lion. How old do you think a person who has lived 1.24 trillion
seconds might be? The question may seem irksome since it
requires having to consider a very small unit a very large number
of times. However, we know how long a second is. But how big
is one trillion? A trillion is 1,000,000,000,000, or one thousand
billion. Thus, to calculate how many seconds there are in one
year: 365 x 24 x 60 x 60 = 31,536,000 seconds. Therefore,

= 31,709.79198376458650431253 1709792 31,710
years, or one would have to be in his 31,710th year of life to have

lived one trillion seconds!
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The value of it continues to fascinate us. Whereas a common

fraction results in a periodic decimal, it does not. A periodic dec-

imal is a decimal that eventually repeats its digits indefinitely. Con-

sider the common fraction By dividing 1 by 3, we get its dec-

imal equivalent as This decimal has a period of one,

which means that the one digit, 3, repeats indefinitely. Here are

some other periodic decimals:

= = .6666, and = 0.285714285714285714.

We place a bar over the last repeating period to indicate its con-

tinuous repetition. The decimal has a period of six, since there are

six places continuously repeating.
There is no periodic repetition in the decimal value of it. As a

matter of fact, although some would use the decimal approximation
of it to many places as a table of random numbers—useful in ran-
domizing a statistical sample—there is even a flaw there. When you
look at, say, the first 1,000 decimal places of it, you will not see the
same number of each of the ten digits represented. Should you
choose to count, you will find that the digits do not appear with
equal frequency even in the first 150 places. For example, there are
fewer sevens (10 in the first 150 places) than threes (16 in the first
150 places). We will examine this situation later.

it Peculiarities

There are many peculiarities in this list of digits. Mathematician
John Conway has indicated that if you separate the decimal value

5. The bar over the 3 indicates that the 3 repeats indefinitely.
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of it into groups of ten places, the probability of each of the ten
digits appearing in any of these blocks is about one in forty thou-
sand. Yet he shows that it does occur in the seventh such group of
ten places, as you can see from the grouping below:

it = 3.1415926535 8979323846 2643383279 5028841971
6939937510 5820974944 5923078164 0628620899 8628034825
3421170679 8214808651 3282306647 0938446095 5058223172
5359408128...

Another way of saying this is that every other grouping of ten has
at least one repeating digit. The sums of these digits also show
some nice results: the sum of the first 144 places is 666, a number
with some curious properties as we shall see later.

On occasion, we stumble upon phenomena involving it that
have nothing whatsoever to do with a circle. For example, the prob-

ability that a randomly selected integer (whole number) has only
unique prime divisors6 is Clearly this relationship has nothing
to do with a circle, yet it involves the circle's ratio, it. This is just
another feature that adds to the centuries-old fascination with it.

The Evolution of the Value of it

There is much to be said for the adventures of calculating the value
of it. We will consider some unusual efforts in the next few chap-
ters. However, it is interesting to note that Archimedes of Syracuse

6. "Unique prime divisors" refers to divisors of a number that are prime numbers
and not used more than once. For example, the number 105 is a number with unique prime
divisors: 3, 5, and 7, while 315 is a number that does not have unique prime divisors: 3,
3, 5, and 7, since the prime divisor 3 is repeated.
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(287—2 12 BCE) showed the value of it to lie between 3 and

That is,

223 22

3.1408.. .<it<3.1428...

The Dutch mathematician Ludolph van Ceulen (1540—1610) calculated

it to thirty-five places, so for a time the ratio it was called Ludoiph 's
number. When Ludolph van Ceulen finished his calculations, he wrote

the following: "Die lust heeft, can naerder comen" ("The one who has
the desire, can come closer").

Another early technique for calculating it was discovered by
John Wallis (1616—1703), a professor of mathematics at Cambridge
and Oxford universities, who subsequently published it in his book,
Arithmetica infinitorum (1655). There he presented a formula for it
(actually which we then merely double to get it). The following
is Wallis's formula:

iv 2x2 4x4 6x6 8x8 2nx2n
x x x x...x x...

2 1x3 3x5 5x7 7x9 (2n—1)x(2n+1)

This product converges to the value of That means it gets closer

and closer to the value of as the number of terms increases.
What is it about the value of it that evokes so much fascination?

For one, it cannot be calculated by a combination of the operations
of addition, subtraction, multiplication, and division, which was
suspected by Aristotle (384—322 BCE). He hypothesized that it is
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an irrational number;7 in other words, the circumference and the
radius of a circle are incommensurable. That means there doesn't
exist a common unit of measure that will allow us to measure both
the circumference and the radius. This was proved in 18068 by the
French mathematician Adrien-Marie Legendre (1752—1 83 3)—
more than two millennia later!

But even more fascinating is the fact that it cannot be calculated
by a combination of the operations of addition, subtraction, multi-
plication, division, and square root extraction. This means it is a
type of nonrational number called a transcendental number.9 This
was already suspected by the Swiss mathematician Leonhard Euler
(1707—1783), '°but it was first proved in 1882 by the German math-
ematician (Carl Louis) Ferdinand Lindemann (1852—1939).
Remember, it is sometimes more difficult to prove that something
cannot be done than to prove it is possible to be done. Thus, for
Lindemann to establish that it could not be produced by a combina-
tion of the five operations—addition, subtraction, multiplication,
division, and square root extraction—was quite an important con-
tribution to the development of our understanding of mathematics.

The establishment of the transcendence of it extinguished the
hopes of all those who sought a method to "square the circle," that
is, to construct" a square of side s, such that its area equals that of
the given circle of radius r. Lindemann killed that hope for all time.

7. An irrational number is one that cannot be expressed as a fraction that has inte-
gers in its numerator and denominator.

8. The proof in 1767 by the German mathematician Johann Heinrich Lambert
(1728—1777) had a flaw in it.

9. A transcendental number is one that is not the root of a polynomial equation with
rational coefficients. Another way of saying this is that it is a number that cannot be
expressed as a combination of the four basic arithmetic operations and root extraction. In
other words, it is a number that cannot be expressed algebraically. it is such a number.

10. The term transcendental number was introduced by Euler.
11. By "construct" we refer to the Euclidean constructions, namely, using a pair of

compasses (or as it is commonly called "a compasses") and an unmarked straightedge.
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You will see when we discuss the history of it in the next chapter that

it was in large part this quest for squaring the circle that resulted in
more and more accurate approximations for the value of it. Despite
Lindemann's work and that of others, many enthusiasts keep sending
their "proofs" for squaring the circle to universities every year. They
don't, or can't, accept the notion of the impossibility of squaring a
circle. They cannot understand that when something has been proved
to be impossible, it doesn't mean that we just weren't able to figure
out how to do it; rather, we proved it is impossible to do.

Sharpening Our Intuition with it

Even in everyday life, knowledge of what it really represents can
heighten our understanding of our faulty perceptions. Here is a
simple illustration of how this knowledge lets us see the geometric
world more objectively. Take a tall and narrow cylindrical drinking
glass. Ask a friend if the circumference is greater or less than the
height. The glass should be chosen so that it would "appear" to
have a longer height than its circumference. (The typical tall
narrow drinking glass fits this requirement.) Now ask your friend
how she might test her conjecture (aside from using a piece of
string). Recall for her that the formula for the circumference of a
circle is C = itd (it times the diameter). She should recall that it
3.14 is the usual approximation, but we'll be even more crude and
use it = 3. Thus the circumference will be 3 times the diameter,
which can be easily "measured" with a stick or a pencil and then
marked off 3 times along the height of the tall glass. Usually you
will find that the circumference is longer than the height of the tall
glass, even though it does not "appear" to be so. This little optical
trick is useful to demonstrate the value of knowing the ratio of the
circumference of a circle to its diameter, namely, it.
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What the Bible Has as the Value of it

Let's stay with this "crude" approximation of it for a moment.
You'll be surprised to know that for centuries scholars believed that
this was the value that it was to have had in biblical times. For
many years virtually all the books on the history of mathematics
stated that in its earliest manifestation in history, namely, in the Old
Testament of the Bible, the value of it is given as 3. Yet recent
"detective work" shows otherwise.'2

One always relishes the notion that a hidden code can reveal
long-lost secrets. Such is the case with the common interpretation
of the value of it in the Bible. There are two places in the Bible
where the same sentence appears, identical in every way except for
one word, which is spelled differently in the two citations. The
description of a pool, or fountain, in King Solomon's temple is
referred to in the passages that may be found in 1 Kings 7:23 and
2 Chronicles 4:2, and reads as follows:

And he made the molten sea'3 of ten cubits from brim to brim,
round in compass, and the height thereof was five cubits; and a
line of thirty cubits did compass it round about.

The circular structure described here is said to have a circumfer-
ence of 30 cubits'4 and a diameter of 10 cubits. From this we notice

30 • • •that the Bible has it = = 3. This is obviously a very primitive
approximation of it. A late-eighteenth-century rabbi, Elijah of Vilna

12. Alfred S. Posamentier and Noam Gordon, "An Astounding Revelation on the
History of it," Mathematics Teacher 77, no. 1 (January 1984): 52.

13. The "molten sea" was a gigantic bronze vessel for ritual ablutions in the court of
the First Temple (966—955 BCE). It was supported on the backs of twelve bronze oxen
(volume 45,000 liters).

14. A cubit is the distance from a person's fingertip to his elbow.
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one of the great modem biblical scholars who
earned the title "Gaon of Vilna" (meaning genius of Vilna), came
up with a remarkable discovery, one that could make most history-
of-mathematics books faulty if they say that the Bible approxi-
mated the value of it as 3. Elijah of Vilna noticed that the Hebrew
word for "line measure" was written differently in each of the two
biblical passages mentioned above.

In 1 Kings 7:23 it was written as whereas in 2 Chronicles
4:2 it was written as Elijah applied the ancient biblical analysis
technique (still used by talmudic scholars today) called gematria,
where the Hebrew letters are given their appropriate numerical
values according to their sequence in the Hebrew alphabet, to the
two spellings of the word for "line measure" and found the fol-
lowing. The letter values are = 100, 1 = 6, and fl = 5. Therefore,

the spelling for "line measure" in 1 Kings 7:23 is = 5 + 6 + 100

= 111, while in 2 Chronicles 4:2 the spelling = 6 + 100 = 106.

Using gematria in an accepted way, he then took the ratio of these
two values: = 1.0472 (rounded to four decimal places), which
he considered the necessary "correction factor." By multiplying the
Bible's apparent value of it, 3, by this "correction factor," one gets
3.1416, which is it correct to four decimal places! "Wow!" is a
common reaction. Such accuracy is quite astonishing for ancient
times. Moreover, remember how just getting it = 3.14 using string
measurements was quite a feat. Now imagine getting it accurate to
four decimal places. We would contend that this would be nearly
impossible with typical string measurements. Try it if you need
convincing.

Let's keep our focus on our effort to just getting acquainted
with it. For the moment we are merely surveying the nature of it and

what it means.

15. In those days Vilna was in Poland, while today the town is named Vilnius and is
in Lithuania.
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Where the Symbol it in Mathematics Came From

You may be wondering by now where mathematicians actually got
the idea to represent the ratio of the circumference of a circle to its
diameter with the Greek letter it. According to the well-known
mathematics historian Florian Cajori (1859—1930), the symbol it
was first used in mathematics by William Oughtred (1575—1660) in
1652 when he referred to the ratio of the circumference of a circle
to its diameter as where it represented the periphery16 of a circle
and ö represented the diameter. In 1665 John Wallis used the
Hebrew letter ?i (mem), to equal one-quarter of the ratio of the cir-
cumference of a circle to its diameter (what, today, we would refer
to as

In 1706 William Jones (1675—1749) published his book Syn-
opsis palmariorum matheseos, in which he used it to represent the
ratio of the circumference of a circle to its diameter. This is
believed to have been the first time that it was used as it is defined
today. Yet, Jones's book alone would not have made the use of the
Greek letter it to represent this geometric ratio as popular as it has
become today. It was the legendary Swiss mathematician Leonhard
Euler, often considered the most prolific writer in the history of
mathematics, who is largely responsible for today's common use of
it. In 1736 Euler began using it to represent the ratio of the circum-
ference of a circle to its diameter. But not until he used the symbol
it in 1748 in his famous book Introductio in analysin infinitorum
did the use of it to represent the ratio of the circumference of a
circle to its diameter become widespread.

16. Note well, this is not what it was later on to represent.
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Euler

Euler is not only the most prolific contributor to the development of
mathematics, he also has given us quite a few symbols that are still
commonly used today. These include the following:

f(x), for the common notation for a mathematical function
e, for the base of natural logarithms
a, b, c, for the lengths of the sides of a triangle
s, for the semiperimeter of a triangle
r, for the length of the radius of the inscribed circle of a triangle
R, for the length of the radius of a circumscribed circle of a tn

angle
for the summation sign

i, for the value of

Euler discovered one of the most famous formulas in mathe-
matics. It involves the symbols e, i, and it in the following way:

= —1. The mathematicians Edward Kasner and James Newman,
in their book Mathematics and the Imagination, make the fol-
lowing statement about this formula: "Elegant, concise, and full
of meaning, we can only reproduce it and not stop to inquire into
its implications. It appeals equally to the mystic, the scientist, the
philosopher, and the mathematician. For each it has its own
meaning."7 They go on to tell the anecdote about the nineteenth-
century Harvard mathematician Benjamin Peirce, who having
come upon the formula "turned to his students and made a remark
which supplies in dramatic quality and appreciation what it may
lack in learning and sophistication: 'Gentlemen,' he said, 'that is
surely true, it is absolutely paradoxical; we cannot understand it,

17. Edward Kasner and James Newman, Mathematics and the Imagination (New
York: Simon and Schuster, 1940), p. 103.
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and we don't know what it means, but we have proved it, and
therefore, we know it must be the truth." So it is with much of
mathematics—we prove something and it becomes accepted—
understanding can follow!

Since Euler is the father of the symbol that has the title role of
this book, we ought to take a glimpse into his interesting life his-
tory. Born in Basel, Switzerland, in 1707, he was initially taught
mathematics by his father, who himself studied under the famous
mathematician Jakob Bernoulli. This connection served him well,
for as the father noticed his son's proclivity for the subject, he
arranged for him to study with Jakob Bernoulli's son (also a famous
mathematician) Johann Bernoulli. Through the influence of the
Bernoulli family, Euler got a position at age twenty with the
Russian Academy in St. Petersburg, where he stayed for fourteen
years. During this time he rose to the position of chief mathemati-
cian. Although Euler spent the next twenty-five years at the
Prussian Academy, he never lost touch with the Russian Academy,
to which he returned for the remaining seventeen years of his life.

It is well known that Ludwig van Beethoven spent the last years
of his life totally deaf and, despite this enormous handicap, con-
tinued to produce magnificent musical compositions—most
notably his Ninth Symphony. An analogous calamity struck Euler.
Clearly the requirement of being able to see is essential to do math-
ematics, as one's ability to hear sound is imperative to being able to
compose music. Euler lost the sight in his right eye as early as
1735, yet he was unimpaired in his mathematical output. This, by
the way, accounts for the poses that we see in pictures of Euler (see
fig. 4).

Soon after his return to St. Petersburg at the invitation of
Catherine the Great, Euler became blind, yet, largely due to his
incredible memory, remained just as productive. However, now he
had to dictate his ideas to his secretary. Euler's record-setting
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output is about 530 books and articles during his lifetime, and many
more manuscripts were left to posterity. These continued to appear
in the Proceedings of the St. Petersburg Academy for forty-seven
years after his death. It is estimated that his total production was
about 886 books and articles.'8 Truly astonishing—especially since
he himself could not see many of these!

18. Howard Eves, An Introduction into the History of Mathematics, 5th ed. (New
York: CBS College Publishing, 1983).

Leonhard Euler

Fig. 1-4 a
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Leonhard Euler

Fig. 1-4 b-c-d-e
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A it Paradox

We mentioned earlier that the interest taken in it is partially due to
its ubiquity. It quickly transcends the ratio that is used to define it.
The concept of it pops up in places where we are left truly per-
plexed. One such involves an entertaining illustration of a paradox
in geometry. This example may also be considered a geometric fal-
lacy. Follow along as we explain it, and see if you can determine
"what's wrong here."

In the figure below, the smaller semicircles extend from one end
of the large semicircle's diameter to the other.

A

A

Fig. 1-5

Let us begin by showing that the sum of the arc lengths of the smaller
semicircles is equal to the arc length of the larger semicircle.

a b c d e B
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That is, the sum of the smaller semicircles equals

ira icb icc ird ire iv iv
+ + — + + — = —(a + b + c + d + e) =

2 2 2 2 22 2

which is the arc length of the large semicircle, since the large semi-
circle's arc length is one-half the diameter (AB) times it. This may

not "appear" to be true, but it is! Let's imagine that we were to
increase the number of smaller semicircles along the fixed line seg-
ment AB.

This sort of progression of increasing the number of semicircles
can be seen in the following figures.

Fig. 1-6 a-b-c-d-e
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They, of course, get smaller. The sum of these smaller semicir-
cular arcs "appears" to be approaching the length of the diameter
AB (referring back to the earlier figure), but, in fact, does not! Sup-
pose the diameter of the large semicircle is 2; then the semicircular
arc length is it. If the sum of the increasingly smaller semicircies
becomes it, then it is equal to 2, the length of the diameter. Impos-
sible! (By now we know that even in the Bible it was recognized
that it was at least 3.) So what "appears" to be true from the dia-
gram and some "logical" extension of it, namely, that the semicir-
cular arc length is equal to the straight-line segment, leads to an
absurd conclusion. It does not follow, however, that the sum of the
semicircles approaches the length of the limit, which in this case is
AB. This "apparent limit sum" is absurd, since the shortest distance
between points A and B is the length of segment AB, not the semi-
circle arc AB (which equals the sum of the smaller semicircles).
Just as this faulty reasoning led us to a weird conclusion, some
faulty thinking led some Indiana legislators to hold a place in the
history of mathematics with some rather strange actions. Read on.

Legislating it

The value of it has vexed mathematicians and others for centuries,
yet perhaps the most outrageous attempt to down" the value
of it occurred in Indiana in 1897. A physician there by the name of
Edward Johnson Goodwin (1828—1902) wrote a paper on measure-
ments of the circle and convinced his local legislative representa-
tive, Taylor I. Record, to introduce it as a bill in the legislature. The
epoch-making suggestion that he put to Taylor I. Record was this:
If the state would pass an act recognizing his, Goodwin's, dis-
covery, then he would allow all Indiana textbooks to use it without
paying him a royalty.
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He had already copyrighted his findings in various European
countries and in the United States. His attempt to present his find-
ings at the Columbian Exposition in Chicago in 1893 failed how-
ever. He did publish a monograph in the American Mathematical
Monthly, a new journal, eager to accept almost anything in its first
year. From Goodwin's monograph one can get as many as nine dif-
ferent values of it. These were calculated by mathematician David
Singmaster'9 to be:

it = 4, 3.160494, 3.232488, 3.265306, 3.2, 3.333333,
3.265986, 2.56, and 3.555556.

On January 18, 1897, the monograph was entered into the leg-
islature as House bill no. 246.

A bill for an act introducing a new mathematical truth and offered

as a contribution to education to be used only by the State of Indiana

free of cost by paying any royalties whatever on the same, provided

it is accepted by the official action of the legislature of 1897.

At first it was accepted without negative vote in the House of Rep-

resentatives of Indiana. It could have attained legal status, where all
other states would have to pay for the right to this "exact value" of it.
Till then, clearly, one needed to pay nothing for mathematical truths.

By legislating the value of it, Goodwin believed he would put
the problem of determining the value of it to rest. Fortunately,
through the newspapers in Indianapolis, Chicago, and New York,
much ridicule was cast upon this silly bill, and the Indiana Senate
eventually killed it. This is just one of many unreasonable efforts to
secure a value for it.

19. David Singmaster, "The Legal Values of Pi," Mathematical Intelligencer (New
York: Springer Verlag) 7, no. 2 (1985): 69—72.
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it in Probability

it shows up in some of the strangest places. To whet your appetite,
we offer one example of how it seems, amazingly enough, to invade
fields of mathematics that apparently have nothing to do with
geometry, such as probability.

The French naturalist Georges Louis Leclerc, Comte de Buffon
(1707—1788) is primarily remembered for his work to popularize the

natural sciences in France, and his Histoire naturelle (1749—1767) is
still prized today, largely because of the exceptional beauty of the
illustrations. In it all the known facts of the natural sciences are elo-
quently discussed, and Buffon even foreshadowed the theory of evo-
lution. Yet in mathematics he is remembered for two things: his
French translation of Newton's Method of Fluxions, the forerunner
of today's calculus, and more so even for the "Buffon needle
problem."2° It is the latter that is of particular interest to us here.

In his "Essai d'arithmétique morale," published in 1777, he
proposes a very intriguing phenomenon relating it to probability. It
goes this way: suppose you have a piece of paper with ruled par-
allel lines throughout, equally spaced (at a distance d between
lines), and a thin needle of length / (where / < d). You then toss the
needle onto the paper many times. Buffon claimed that the proba-
bility that the needle will touch one of the ruled lines is Since
Buffon was a man of wealth and had much time to spare, he tried
this experiment with thousands of tosses to substantiate his conclu-
sions. For the next thirty-five years this problem was essentially
forgotten until the preeminent mathematician Pierre Simon Laplace
(1749—1827) popularized it. We must bear in mind that Laplace was
one of the greatest French mathematicians, and in 1812 he pub-

20. For a more complete discussion of Buffon's needle problem see Lee L.
Schroeder, "Buffon's Needle Problem: An Exciting Application of Many Mathematical
Concepts," Mathematics Teacher 67, no. 2 (1974): 183—86.
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lished a major work in probability, Théorie analytique des proba-
bilities, which gave him much prominence in the field.

You may want to try Buffon's experiment yourself. Begin by sim-
plifying the problem (without any loss of generality) by letting I = d, so

that the probability of the needle (now with a length equal to the space

between the lines) touching one of the lines is That is, it = where

P is the probability that the needle will intersect the line, which is

— number of line-touching tosses

number of all tosses

So to calculate it this way, just toss the needle and tally the line-touching

tosses and the total number of tosses. Then put them into this formula:

— 2xnumberofalltosses

number of intersection tosses

The more tosses you have, the more accurate your estimate of
it should be. In 1901 the Italian mathematician Mario Lazzarini
tried this with 3,408 tosses of the needle and got it = 3.1415929, an

amazing accuracy. You might also try to have a computer simulate
the needle tossing. It's much easier that way. In any case, this is by
far not the most accurate way to calculate the value of it. It is, how-
ever, quite novel. Just think about it. The probability of a tossed
needle intersecting a line is related to it, the ratio of the circumfer-
ence of a circle to its diameter.

We will next provide you with a simple tour through the long
journey mathematicians have taken over four thousand years to get an

increasingly more accurate estimate for the value of it. This history of
it will take some large leaps; however, we will highlight the more sig-
nificant and easily understood methods developed over the millennia.





Chapter 2

The History of ic

In the Beginning

The story of it probably goes much further back in time than we can
document through written records. Somewhere in the past, after a
wheel (or any truly circular object) was invented, the circumference
was probably measured for the sake of comparison. Perhaps in the
early days it was important to measure how far a wheel would
travel in one revolution. This might have been done by rolling the
wheel on the ground and marking off the distance it rolled in
exactly one revolution (without slippage, of course) or with some-
thing resembling a string placed along it. The diameter, a much
easier dimension to measure, since it merely required placing a
straight stick or rule alongside it and marking off its length, was
probably also noted. We can assume that these two measurements

41
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were compared for various circular objects. This was likely the
beginning of the establishment of comparison between the two
measurements that seem related to each other. Was there some sort
of common difference or common ratio between their lengths?
Each time this comparison showed that the circumference was just
a bit more than three times as long as the diameter. The question
that perplexed individuals over the millennia was how much more
than three times the diameter was the circumference? That would
indicate that the relationship was one of a ratio. The history of it is
the quest to find the ratio between the circumference of a circle and
its diameter.

The Ancient Egyptians

Frequent measurements probably showed that the part exceeding three

times the diameter appeared to be about one-ninth of the diameter. We

can assume this from the famous Rhind Papyrus, written by Ahmes, an

Egyptian scribe, about 1650 BCE.' He said that if we construct a
square with a side whose length is eight-ninths of the diameter of the
circle, then the square's area will be equal to that of the circle. At this
point, you can see there was no reason to find the ratio of the circum-

ference to the diameter. Rather, the issue was to construct a square,
using the classical tools (an unmarked straightedge and a pair of com-

passes), with the same area as that of a given circle. This became one
of the three famous problems of antiquity.2 Although we know today

I This was a mathematical practical handbook, containing eighty-five problems copied by the
scribe Ahmes from previous works. Alexander Henry Rhind, a Scottish Egyptologist, purchased this
eighteen-foot-long (one-foot-wide) manuscript in 1858, which is now in the co'lection of the British
Museum. This is one of our primary sources of information about the Egyptian mathematics of the
times

2 The other two famous problems of antiquity are using only an unmarked straightedge and a
pair of compasses to construct a cube with twice the vo'ume of a given cube and using these same
tools to trisect any angie.
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that this is an impossible construction,3 it, nonetheless, fascinated
mathematicians for centuries. It was the effort to construct a square
with an area equal to that of a given circle that produced the early
approximations of it. For example, if we inspect the process used in the

Rhind Papyrus, we can deduce how close the ancient Egyptians were
to the true value of it. We will now try to replicate their work.

We will begin with a circle with diameter d. According to the
above stipulations, the side of the square would then be d.

Fig. 2-1

We know from today's knowledge about circles that the area of
the circle4 is itr2, which for this circle gives us5

d2
in—I =ii:—

4

3. As noted earlier, the impossibility of constructing a square with area equal to that of a given
circle was conjectured for many years, but was first proved conclusively in 1882 by the German
mathematician Carl Louis Ferdinand Lindemann (1852—1939).

4. We mentioned that the symbol it was not used to represent the ratio of the circumference of
a circle to the diameter until more than three thousand years later. However, for convenience and to
avoid confusion, we will use the symbol it already at this early stage.

5. The equal sign (=) was first used by the English physician and mathematician Robert
Recorde (1510?—1558) in "The Whetstone of Witte" (1557), when he said that "noc .2. thynges, can
be moare equalle" than the two parallel lines that make up the equal sign.
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The area of the square is simply

— 64d2

- 81

Since Ahmes assumed these to be equal, we get the fol-
lowing equation:

d2 64d2
it— =

4 81

jr64
481

So

Jr = = 3.1604938271604938271 60493827
81

This is a reasonably close approximation of what we know the
value of it to be by using our modem methods.

Just Before the Common Era

We now take a big leap in time to the Babylonians, which spans

from 2000 BCE to about 600 BCE. In 1936 some mathematical

tablets were unearthed at Susa (not far from Babylon).6 One of

these compares the perimeter of a regular hexagon7 to the circum-

ference of its circumscribed circle. The way they did this led
today's mathematicians to deduce that the Babylonians used =

3.125 as their approximation for it. How does this compare to the

Egyptians' approximation for it? It is just a very little bit closer.
6. Today, easiest located as the region between the Tigris and Euphrates rivers.
7. A regular polygon (in this case a hexagon, a polygon of six sides) is one where all the sides

are the same length and all the angles are equaL
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As we progress through the early history of the development of the

ratio (it) of the circumference to the diameter of a circle, we come upon

the Bible (Old Testament) written about 550 BCE, where the Talmud's

books of Kings and Chronicles describe King Solomon's water basin

(or well) and give us the impression that they believed it = 3. However,

we discussed earlier (see pages 27—28) the notion that there might have

been a hidden value in these writings yielding the value it = 3.1416,

even a more accurate value than the earlier ones.

One of the biggest challenges facing these ancient mathematicians

was to be able to measure a circular figure (even parts of circle) in

terms of straight lines. This was essentially the problem to be solved

in "squaring the circle," that is, constructing a side of a square whose

area is equal to that of a given circle. Circular arcs and straight lines

could not find a common measure. There was always "something left

over" when trying to compare these two types of measurement. Hip-

pocrates of Chios, another Greek mathematician who flourished about

430 BCE, was the first to be able to show that areas of lunes (i.e., areas

bounded by circular arcs) can be equal to the area of a rectilinear

figure, such as a triangle.8 Although Hippocrates' works are lost, we

shall show an example that may have been similar to his. In other

words, we will show an example where a region bounded by circular

arcs can be exactly equal to a region bounded by straight lines.

To tackle this, let's first recall the famous Pythagorean theorem. It

states that the sum of the squares of the legs of a right triangle is equal

to the square of the hypotenuse. This can be stated a bit differently

with the same effect: The sum of the squares on the legs of a right tri-

angle is equal to the square on the hypotenuse. Geometrically this can

8 A rectilinear figure is one bounded by straight line segments.
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be seen in figure 2-2, where the sum of the areas of the two shaded

squares is the same as the larger area of the unshaded square.

E

G

This can then be restated as the sum of the areas of the squares
on the legs of a right triangle is equal to the area of the square on
the hypotenuse, which then draws us a big step forward to a gener-
alization that will allow us to replace the squares with any similar
polygons, as long as they are placed in corresponding orientation.
That is, the corresponding sides of these similar polygons must
coincide with the sides of the right triangle on which they are
placed. We can then make the following generalization:

The sum of the areas of the similar polygons on the legs
of a right triangle is equal to the area of the similar
polygon on the hypotenuse.

D

C A

K

Fig. 2-2
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For our purposes, we will use semicircies to represent our similar
polygons, since all semicircles are the same shape, and hence, sim-
ilar. This will then read as follows:

The sum of the areas of the semicircies on the legs of a
right triangle is equal to the area of the semicircle on the
hypotenuse.

This extension of the Pythagorean theorem can be proved, by consid-

ering the three sides of the right triangle to be 2a, 2b, and 2c. Then the

areas of the three semicircles are and Let's see if this rela-

tionship holds. That is, is + = Dividing through by the

common factor gives us a2 + = c2, which we know will result by

applying the Pythagorean theorem to this right triangle. That is, we get

4a2 + 4b2 = 4c2, which is then a2 + = c2. Thus, for the figure below

(fig. 2-3), we can say that the areas of the semicircles relate as follows:

AreaP=Area Q +AreaR

P

U.
T

. .8

R

Fig. 2-3
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Suppose we now flip semicircle P over the rest of the figure
(using AB as its axis). We would get a figure as shown below.
Notice that the flipped-over semicircle now forms four new regions
marked L1, L2, J1, and J2.

Let us now focus on the lunes formed by the two semicircies. We
mark them L1 and L2.

L1

.4

S

T

L2

Fig. 2-5

When we extended the Pythagorean theorem (above) to semicircles
instead of squares, we established that

AreaP=AreaQ +AreaR

C
'8

Fig. 2-4
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In the figure above, keeping in mind the largest semicircle's
new position—that being flipped over the triangle—that same rela-
tionship can be written as follows:

Area J1 + Area J2 + Area T = Area L1 + Area J1 + Area L2 + Area J2

Take a moment to convince yourself of this relationship.

If we subtract Area J1 + Area J2 from both sides, we get the
astonishing result:

AreaT=AreaL1 +AreaL2

That is, we have the area of a rectilinear9 figure (the triangle) equal
to the sum of the areas of some nonrectilinear figures (the lunes).'°
This is a very profound result, since it is at the crux of one of the
most vexing issues in mathematics—that of finding equality
between measurements of circles and rectilinear figures. As we said
before, this was one of the challenges that faced ancient mathemati-
cians as they tried to square the circle.

There is a nice three-dimensional example in which a sphere
has the same volume as a rectilinear figure, namely, a tetrahedron,
which is a solid figure with four faces (planes). So as not to disturb
the continuity in this chapter, we provide this discussion in
appendix A. (See page 293.)

Although the circle-ratio it is indispensable in the calculation of
the area of circles (or semicircles), the famous Pythagorean the-
orem eliminates it from the comparison of areas of semicircles on
the three sides of a right triangle.

9 A rectilinear figure is one that is only bounded by straight lines.
10. A lune in the plane is a closed figure bordered by circular arcs.
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4

P

0
T

.8

R

Fig. 2-6

Let us return to the relationship we established earlier, namely, that

AreaP=AreaQ+AreaR

so that we get

I I (b'\2 1
(a\2

—.lr.I — I =—.,r.I — I +—.jr.I —
2 2 2

where a = BC, b = AC, and c = AB

This gives us

ir 2 2 2—.c =—.b +—•a
8 8 8'

which reduces to c2 = b2 + a2. Notice the it disappeared!"

Euclid's Elements (Ca. 300 BCE), clearly the first and most
comprehensive geometry book ever written, also made a contribu-
tion to the history of it. In Book XII, Proposition 2, Euclid states
and proves that "circles are to each other as the squares on the

II. We simply multiplied each term by !.
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diameters." This was probably taken from Hippocrates (not to be
confused with the physician, Hippocrates of Cos). This is particu-
larly significant because for the first time it establishes that there is,
in fact, a constant, such as it, that relates the circumference to the
diameter of a circle. What is being said here might be clearer if
shown symbolically:

area of circle 1 = (diameter of circle 1)2

area of circle 2 (diameter of circle 2)2

A simple (and legitimate) algebraic manipulation lets us change

the proportion above to read as

area of circle 1 area of circle 2
2 = 2

= some constant value
(diameter of circle 1) (diameter of circle 2)

Let's take just one of these fractions and set it equal to the con-

stant, which today we know12 is actually

Another way of writing this is that the area of circle 1 equals

(diameter of circle 1)2 x (some constant value)

4 4 4

This says that the area of a circle is equal to some constant, say

times the square of the diameter (or for that matter twice the
radius). Eventually, it leads us to the formula for the area of a circle.

Actually this work of Euclid only hints at the possible awareness of

a constant it. We followed it to (what we know today as) the correct

representation of it.

12 Using our modern knowledge, we can represent this as = =
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Archimedes' Contributions

One of the greatest contributors in the early history of mathematics
was Archimedes, born in Syracuse (Sicily) about 287 BCE, the son
of the astronomer Phidias. For a time he studied with the successors
of Euclid in Alexandria, Egypt. There he also met Conon of Samos,
for whom he had high regard as an astronomer and mathematician,
and Eratosthenes of Cyrene, with whom he corresponded for years
after leaving Egypt. His contributions to mathematics and physics
are legendary. We will focus only on one small part of his work:
that involving the circle and it.

Not until Archimedes was there a rigorous connection between
the circumference of a circle and its area. This can be found in
Archimedes' Measurement of the Circle. In this important book
there are three propositions regarding the circle that have had a role
in the historical development of the value of it. We shall present
these three propositions along with a bit of explanation of each.

1. The area of a circle is equal to that of a right triangle where
the legs of the right triangle are respectively equal to the radius and
circumference of the circle.

P

Fig. 2-7
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The area of the circle is the familiar itr2, and the area of the right
triangle (which is one-half the product of its two legs) is

= icr2
2

Although Archimedes stated this in a somewhat convoluted way, it
is amazing that he hit the formula that we accept today right on the
head!

2. The ratio of the area of a circle to that of a square with side
equal to the circle's diameter is close to 11:14.

To investigate this proposition, we will set up the ratio as it is
given to us.

c F

B 2r

D E

Fig. 2-8

The area of the circle is itr2, and the area of the square (whose
side is 2r) is (2r)2 = 4r2. The ratio of these is

icr2 iv 11

4r2 — 4 — 14'

as was stated in the proposition. When we simplify this proportion we get

44 22
it = = —,

14 7

which should remind you of another very familiar approximation of it.
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3. The circumference of a circle is less than 3 times its diam-
eter but more than 3 times the diameter.

Let us take a quick look at how Archimedes actually came to this
conclusion. (A more-detailed discussion of his work will be found in
chapter 3.) What Archimedes did was to inscribe a regular hexagon'3 in

a given circle and circumscribe a regular hexagon about this same
circle. He was able to find the areas of the two hexagons and then knew

that the area of the circle had to be somewhere between these two areas.

Inscribed and circumscribed hexagons

Fig. 2-9

He then repeated this with regular dodecagons (twelve-sided
regular polygons) and again calculated the area of each, realizing
that the circle's area had to be between these values, and more
closely "sandwiched in," to use a modern analogy.

13. A regular hexagon is a six-sided polygon that has all sides and angles equal.
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This was then done for twenty-four-sided regular polygons,
forty-eight-sided regular polygons, and ninety-six-sided regular
polygons, each time getting closer and closer to the area of the
circle. Mind you, this was done before the Hindu number system
was used in the Western world—no mean feat of calculations!
Archimedes finally concluded that the value of it is larger than

3 How does this compare to our known value
of it? We change these fractions to decimal form so that we can
make a comparison of their values to what we know today as the
true value of it.

Therefore, since

3 3.14084507042253521126760563380281690

and

3 = 3.142857142857142857

we can see how well Archimedes placed the value of it:

3.14084507042253521126760563380281690 <It < 3.142857

This is consistent with what we know as the value of it today,
3. 141592653589793238462643383279502884197 169399375 1058

.(taken to over fifty decimal places).
Our known value of it is nicely squeezed in between the two

values that Archimedes used as boundaries.
For now, we can leave this with the notion that he saw a circle

as the limit of the ever-increasing number of sides of a regular
polygon of a fixed perimeter.
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Two closer approximation values have been found, according to

Heron of Alexandria (75—110), in a lost document of Archimedes:

211,872 195,882<Jr<
67,441 62,351

which places it in the interval 3.14 1590. . . <it <3.14 1601

In the passing years, the approximations became ever closer to the

value of it, so that in 200 BCE Apollonius of Perge (262—1 90 BCE),

a competitor of the great Archimedes, seemed to have discovered an

even better approximation for it than that of Archimedes:

177
31416

1,250 1,250

Regardless, we still consider Archimedes to be one of the major

contributors to the history of mathematics.

Archimedes' life proceeded quietly up to his death in 212 BCE.

He was killed defending his hometown of Syracuse during the
Second Punic war. Archimedes was believed to have said to a
Roman soldier, who came to summon him to the emperor Mar-
cellus, and whose shadow covered one of his drawings in the sand:

"Don't disturb my circles" ("Noli turbare circulos meos"), where-
upon the soldier stabbed him to death. Archimedes requested that
his tombstone be decorated with a sphere contained in the smallest

possible cylinder and inscribed with the ratio of the sphere's
volume to that of the cylinder.'4 Archimedes had considered the
discovery of this ratio the greatest of all his accomplishments.

14. This may be found in Archimedes' book On the Sphere and the Cylinder.
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The relationship between these two solids is truly unusual. The
ratio of their volumes and the ratio of their surface areas is the
same! Both are 2:3. We can easily calculate these with our current
knowledge about the formulas for these various figures.

The formula for the volume of a sphere is The volume
of the cylinder is obtained by taking the area of the base and mul-
tiplying it by the height:

(7cr2)(2r) = 2irr3 = —icr3
3

(we wrote 2 as the fraction to make the comparison easier).
Thus the ratio of the volumes of the sphere to the cylinder is

— icr
3 2

6

3

15 This formula was first published by Archimedes in his book On the Sphere and the Cylinder.

Fig. 2-10
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Now let's compare the surface areas of the two solids. The for-
mula for the surface area of a sphere is 4itr2 . The surface area of the
cylinder is found by adding the areas of the two bases to the lateral
area of the cylinder:

(2)(7rr2) + (2r)(2irr) = 6jrr2

Comparing these two surface areas, we get

4jrr2 — 2

6jrr2 3

Lo and behold, the same ratio—truly amazing!

In his book On the Sphere and the Cylinder, Archimedes also
stated that "a sphere is four times as great as a cone with a great
circle of the sphere as its base and with its height equal to the radius
of the sphere."6 This can be extended by the comparison of the
cone to the cylinder that contains the sphere. We can easily estab-
lish Archimedes' proposition above, for the cone with base radius r
and height r has a volume equal to

11 2"' 1

—IJrr3\ / 3

which is of the volume of the sphere of radius r.

Now if we double the length of the height of this cone so that it can

be inscribed in the cylinder of equal height, then its volume will be

!(,rr2)(2r) =
3 3

or one-half the volume of the sphere.

16 The great circle of a sphere is the largest circle that can be drawn on a sphere—or to put it more

simply, if we were to cut a sphere into two hemispheres, their base would be a great circle of the sphere.
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Thus we can represent that the volumes of

[2
cone

[4 31
sphere I —ir•r I,

[3 ]

and cylinder

with the same base are in the ratio of 1:2:3.

Archimedes is still revered today, hailed as the greatest thinker
of his time, with countless ingenious inventions and mathematical
achievements. As evidence of his popularity, on October 29, 1998,
a book of his, on the calculation of areas and volumes, brought $2
million at a Christie's auction.

Although we assumed earlier that in ancient times circumfer-
ences might have been measured by the distance a wheel traveled
in one revolution, Marcus Vitruvius Pollio, more commonly known
today as Vitruvius, a Roman architect and engineer, used this
method to calculate it as 3 = 3.125. This was not exactly a step
forward, given that he wrote his book da Architectura in the year
20 BCE.

The Beginning of the Common Era

We now get a bit closer to the true value of it with the great
astronomer, geographer, and mathematician Claudius Ptolemaeus,
popularly known as Ptolemy (ca. 83 CE—ca. 161 CE), who about
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150 CE wrote an astronomical treatise, Alma gest. He used the sex-
agesimal system'7 to get

60 602 120

This is the most accurate result after Archimedes.

The issue of establishing the irrationality of it was not settled
until the eighteenth century (as we will see a bit later). However,
it was anticipated by the great Jewish philosopher Maimonides
(1 135_1204)18 in his commentary on the Bible, which states:

You need to know that the ratio of the circle's diameter to its cir-

cumference is not known and it is never possible to express it pre-

cisely. This is not due to a lack in our knowledge, as the sect called

Gahaliya [the ignorants] thinks; but it is in its nature that it is
unknown, and there is no way [to know it], but it is known approx-

imately. The geometers have already written essays about this, that

is, to know the ratio of the diameter to the circumference approxi-

mately, and the proofs for this. This approximation, which is
accepted by the educated people, is the ratio of one to three and one

seventh. Every circle, whose diameter is one handbreadth, has in

its circumference three and one seventh handbreadths, approxi-

mately. As it will never be perceived but approximately, they [the

Hebrew sages] took the nearest integer and said that every circle

whose circumference is three fists is one fist wide, and they con-

tented themselves with this for their needs in the religious law.'9

17. A number system using a base of 60, instead of the decimal system that uses the base 10.
18. His actual name was Moses ben Maimon, and he wrote commentaries on the Bible as well

as treatises on logic, mathematics, medicine, law, and theology. He became rabbi of Cairo in 1177.
19. Mishna (Mishna Eruvin I 5), Mo'ed section (Jerusalem: Me'orot, 1973), pp. 106—107.
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The Chinese Contributions

Meanwhile, in China, independent investigations in geometry paralleled

some of the work in the Western world. Liu Hui in 263 CE also used reg-

ular polygons with increasing numbers of sides to approximate the circle.

However, he used only inscribed circles, while Archimedes used both

inscribed and circumscribed circles. Liu's approximation of it was

3,927
= 3.1416

1,250

and might have been more accurate than Archimedes' approximation
since he used a decimal number system with a place value system. Also

noteworthy about Liu's work is that he assumed the area of a circle is half

the circumference times half the diameter. Let us take a closer look at this

assumption. What Liu had assumed can be written symbolically as

—C.—d = —(2irr).—(2r) = icr222 2 2

Recognize this? Yes, this is the familiar formula for the area of a circle.

Yet perhaps the most accurate approximation of it for the next
thousand years was that of the Chinese astronomer and mathemati-
cian Zu Chongzhi (429—500), who through various mysterious
ways2° came up with

it = = 3.1415929203539823008849557522123893805
113

30973451327433628318584070796460176991150442477

87610619469026548672566371681415929203539823008

84955752212389380530973451327433628318584070796

4601769911504424778761061946902654867256637168

which continues by repeating every 112 places.

20 Some say that he may have used Liu's methods, using regu'ar polygons of even more sides.
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The Beginning of the Renaissance

Our next stop in tracing the history of it must be with Leonardo Pisano

(1170—1250), better known as Fibonacci. Though a citizen in the city-

state of Pisa, he traveled extensively throughout the Middle East and
brought back to Italy a new understanding of and procedure in mathe-

matics. In his famous book, Liber abaci, first published in 1202, he
introduced the Hindu number system that we use today. It was the first

published mention of this system in western Europe. It also contains the

famous rabbit problem that produced the well-known Fibonacci num-
bers.2' In 1223 he wrote Practica geometriae, where, making use of a
regular polygon of ninety-six sides, he computed the value of it to be

1,440
= 3.1418181818181818181818181818,

458—
3

which he obtained by taking the average between

1,440
= 3.14273243 12527280663465735486687...

458—
5

and

1,440
= 3.141056713523994183228308288899...

458—
9

Although for his time his approximation was not as close as
others, Fibonacci 's contributions to the mathematics development
of western Europe are legendary, especially for the times following
the Dark Ages.

21. The Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, .., where each number after
the first two is the sum of the two previous numbers
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The Sixteenth Century

Throughout the centuries many attempts at approximating the value
of it continued, though the accuracy wavered back and forth. For
example, at the turn of the sixteenth century the famous German
artist and mathematician Albrecht Dürer (1471—1528) used an
approximation for it of 3 = 3.125, far less accurate than other
approximations before that time.

A big change in the computation of it came in 1579, when the
French mathematician François Viète (1540—1603), using the
method developed by the Greeks, considered a regular polygon of
6 • 216 = 393,216 sides and calculated it correct to nine decimal
places. He also discovered the first use of an infinite product,22 to
determine the value of it.

2 fl /i 1 fi
—= I—+— 141+ 1+ I—...
iv V2 V2 2V2 V2 2V2 2V2
Viète calculated the value of it to be between: 3.1415926535

and 3.1415926537. Again, a new milestone in the long history
of it was reached.

The process of letting regular polygons with enormous numbers
of sides approach the dimensions of a circle continued. The next
step forward in the quest to getting more accurate values of it came
in 1593, when the Antwerp physician and mathematician Adriaen
van Roomen,23 using a regular polygon of 230 sides (a polygon of
1,073,741,824 sides), calculated it to seventeen decimal places (of
which the first fifteen decimal places were correct).

22. This refers to a product of an infinite number of terms following a given pattern.
23. Sometimes referred to by his Latin name, Adrianus Romanus.
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The Seventeenth Century

The German mathematician Ludolph van Ceulen (1540—1610),
who was intent on finding the true value of it, found its value accu-
rate to twenty decimal places in 1596. His result was calculated
from the perimeters of inscribed and circumscribed regular poly-
gons of 60 • = 515,396,075,520 sides.

To achieve this, he had to discover some new theorems to carry
out the calculations. The big step forward in this pursuit for a true
value of it came in 1610, when Ludolph van Ceulen found the value
of it to thirty-five decimal places, using a polygon of 262 =

4,611,686,018,427,387,904 sides. He was so devoted to (or we
might say obsessed with) calculating the value of it and he made
such great strides in that endeavor that, in his honor, it is sometimes
referred to as the Ludoiphian number. In addition, upon his death,
his wife had his value of it engraved onto his tombstone in St.
Pieter's Kerk in Leiden, Holland.

Earlier we mentioned the work of John Wallis (1616—1703).
He was a professor of mathematics at Cambridge and Oxford
universities, and published a book, Arithmetica infinitorum
(1655), where he presented the formula for it (actually which

we then merely double to get it):

iv 2x2 4x4 6x6 8x8 2nx2n
x x x x...x x...

2 1x3 3x5 5x7 7x9 (2n—1)x(2n+1)

This product converges24 to the value of That means its
double gets closer and closer to the value of it as the number of
terms increases.

24. A series converges when it approaches a specific va'ue as a Umit. That is, the more terms
in the series, the doser it wiU get to the number to which it converges.
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Wallis's results were then transformed into a continued fraction25

by William Brouncker (ca. 1620_1684)26 by methods that we are not
certain of today. Brouncker obtained the following value of

4 12

—=1+
Jr

32

2+
2+ 72

2+ 92

2+
2+•••

This procedure to get the value of it is not only tedious but also
requires quite a few terms before it gets close to the value of it that
we know today.

Still, let's take a look at what this continued fraction can tell us.
First, notice that we can maintain the pattern of the above continued
fraction by taking further squares of successive odd numbers. To
inspect the continued fraction, we look at increasing pieces of the
fraction, each time cutting off the rest of the fraction at a plus sign.
We call these pieces convergents.

The first convergent is 1

The second convergent is

12 3
1+ — = — =1.522

The third convergent is27

1+ =1+—=1+—=1+—=—=1.15384615384632 9 13 13 132+— 2+—
2 2 2

25. If you are unfamiliar with continued fractions, then see page 146 for a simple introduction
26. William Lord Viscount Brouncker (Ca. 1620—1684), who found this continued fraction, was

cofounder and the first president of the Royal 5ociety (1660)
27 The bar over the digits means that the pattern continues indefinitely.
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The fourth convergent is

1+ =1+
1

=1+
1

2 + 2+ 2 + 2 +
76 76

2 2 2

The fifth convergent is

1.1977186311787072243346007604563
789

Since these convergents are approximate values of to get
these primitive approximations of it, we need to multiply the recip-
rocal of each convergent by 4. Successively, these values for it are

1.4 =4

3 3

15 15

= = 2.8952380
105 105

945 945 315

Notice how we are beginning (albeit rather slowly) to sandwich
in the true value of it; one value is higher, then one is lower, each
time getting closer to the true value:28 3.14159265358979.... This,
too, was a step closer to the modern methods, even though it didn't
achieve the same accuracy as the tedious methods of those who
kept constructing regular polygons with an ever-increasing number
of sides until they almost "looked" like a circle.

As we mentioned earlier, it took centuries to obtain greater and
greater accuracy of the value of it. In 1647 the English mathematician

John Wallis designated the ratio of the circumference of a circle to

28. Remember, we will never be able to write the true value of it in decimal notation since it
is always an approximation. The more decimal places we have, the closer we get to the actual value
Here we give an approximation to fourteen-decimal-place accuracy.
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the diameter as where it probably stood for the periphery (which
is not what it stands for today!) and (delta) stood for the diameter.
Later, in 1685, Wallis used it to represent the periphery and a small
square, o , to represent his ratio 3 14149. using 3.14149... this was his
approximation of today's it. Gradually, mathematicians approached
the more universal use of it for the ratio it represents today.

Our knowledge increased in 1668 when the Scottish mathe-
matician James Gregory (1638—1675) anticipated Germany's
greatest mathematician of the seventeenth century, Gottfried Wil-
helm Leibniz,29 by five years when he came up with the following
approximation formula for it:

Jr 11111
4 3 5 7 9 11

This is a very rough approximation, since the series converges very

slowly. It would take one hundred thousand terms to get to a five-place

accuracy of it.

The Eighteenth Century—When it Gets Its Name

We now are at about the time when another noteworthy moment in
the history of it occurs. In 1706 the English mathematician William
Jones (1675—1749), in his book, Synopsis palmariorum matheseos,3°

used the symbol it for the first time to actually represent the ratio of
the circumference of a circle to its diameter. However, the true pop-
ularity of the symbol it to represent this ratio came in 1748, when, as
noted earlier, one of mathematics' most prolific contributors, the
Swiss mathematician Leonhard Euler (1707—1783), used the symbol

it in his book Introductio in analysin infinitorum to represent the ratio

29. Leibniz was credited as the coinventor of the calculus in modern times.
30. "A New Introduction to Mathematics"
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of the circumference of a circle to its diameter. A brilliant mathemati-

cian with an uncanny memory and ability to do complex calculations,

Euler developed numerous methods for calculating it, some of which
approached the true value of it more quickly (that is, in fewer steps)
than procedures developed by his predecessors. Here he calculated it
to 126-place accuracy. One formula that he used to calculate it was
the first in a group of series giving successive powers of it. The series

below is particularly interesting, since it is a series created by taking
the squares of the terms in a harmonic series.3'

1 1 1 1

6 22 32 42 52

There are many theorems named after Euler, since he wrote
profusely in almost all areas of mathematics, yet the most famous
formula (if there actually is one) bearing his name is the relation-
ship that ties together a number of seemingly unrelated concepts. It
is elni + 1 = 0, where e is the base of the natural logarithms,33 and
is the imaginary unit of the complex numbers (i = In this for-
mula we have five most important numbers: 0, 1, e, i, and it This
formula prompted the famous German mathematician (Christian)
Felix Klein (1849—1925) to proclaim: "All Analysis Lies Here!"

31. A harmonic sequence is formed by taking the reciprocals of the terms of an arithmetic sequence

(one with a common difference between terms). The simplest arithmetic sequence is 1, 2, 3, 4, 5,6,.
The related harmonic senes is:

I I I I I
I+—+—+—+—+—2 3456

The name "harmonic" comes from the fact that a set of stnngs of the exact same type and with the

same torsion, yet of lengths proportional to the terms of a harmonic sequence, when strummed together

will produce a harmonic tone.

32. More about this unusual relationship is presented in Herbert Hauptmann's afterword (p. 284).

33. The power to which a base must be raised to equal a given number. For example, given the base

10, the logarithm of 16 is (approximately) 1.2041 because 101.2041 equals (approximately) 16. Both nat-

ural logarithms (to the base e, which is approximately 2 71828) and common logarithms (to the base 10)

are used in computer programming. The natural logarithm e = Iim(1 +!) = 2 718281828459045

34. We discussed this formula in chapter 1 (page 30), although it was given in the form eJr= -1, and

made some mention of its accolades.
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Approaching the Nineteenth Century

The question about what kind of number is it began to consume
mathematicians. With each attempt to get more place values for it,
there was always the hope that a pattern would emerge and that
there would be a period of digits repeating. This would have then
made it a rational number. This was not to happen. In 1794 the
French mathematician Adrien Marie Legendre (1752—1833) wrote
a book entitled Elements de Géométrie in which he proved that it2
is irrational. It was the first use of the symbol it in a French book.
In 1806 he also proved that it is irrational. We know that Aristotle
(384—322 BCE) suspected it was an irrational number. But his spec-
ulation lasted more than two millennia before being proved correct.

Although the great German mathematician Carl Friedrich
Gauss (1777—1855) also weighed in with calculations of it, he
employed Zacharias Dahse (1824—1861), a lightning-fast mental
calculator, to assist with his research. Dahse, using the formula

(1
—=arctanl — I+arctanl — I+arctanl —
4

found it correct to two hundred decimal places.35 Dahse became a
legend with his calculating ability. It is believed that he did these cal-

culations mentally. He was known to be able to multiply in his head
two eight-digit numbers in forty-five seconds. Multiplying two forty-
digit numbers required forty minutes of mental calculation time, and he

was able to mentally multiply two one-hundred-digit numbers in eight

hours and forty-five minutes. In fairness to Gauss, it should be said that

he, too, was a marvelous calculator. It is believed that Gauss's calcu-
lating talent enabled him to see patterns and make many mathematical

conjectures that he then later proved, establishing them as theorems.

35 This formula was developed by the Viennese mathematician L. K. 5chulz von Strassnitzky.
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The pursuit of an accurate value for it continued. Some efforts
made slight progress by increasing the number of correct decimal
places for it, while others claimed to have done so but upon further
examination had some errors. In 1847 Thomas Clausen (1801—1855),

a German mathematician, calculated it correct to 248 decimal places.
Then in 1853 William Rutherford, an Englishman, extended this to 440

decimal places. One of Rutherford's students, William Shanks
(1812—1882), extended the value of it to 707 decimal places in 1874.

However, there was an error in the 528th place, which was first
detected in 1946 with the aid of an electronic computer—using seventy

hours of running time! Shanks required fifteen years for his calculation.

Entering the Twentieth Century

As the history of it progresses, we must take note of the work of
Carl Louis Ferdinand Lindemann (1852—1939), a German mathe-
matician who proved that it was not only not a rational number, but,
in fact, it is a transcendental number.36 As noted earlier, with the
establishment that it was a transcendental number, Lindemann
finally put to rest that ancient problem of finding the length of the
side of a square whose area is equal to that of a given circle, when
he proved that it was impossible to be done.

In chapter 1 we discussed Buffon's needle technique as a method of

calculating the value of it. This seemingly unrelated field of probability

seemed to relate to it. It is truly astonishing that this geometric ratio, it,

would be related to a situation in probability. In the same way, in 1904,

R. Chartres showed that the probability that two randomly selected pos-

36. A transcendental number is one that cannot be the root of an algebraic equation with
rational coefficients. For example, is an irrational number but not a transcendenta' number; it is

the root of the equation x2 — 2 = 0. On the other hand, e is a transcendental number (see note 29)
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itive integers are relatively prime37 is This might be even more
amazing, since at least with Buffon's needle there is something physical

going on: the placement of a needle and parallel lines. Here there is
nothing geometric, just number theory.

In 1914 the Indian mathematical genius Srinivasa Ramanujan
(1882_1920),38 established many formulas for calculating the value
of it. Some were very complicated and had to wait for the
advent of the computer to be appropriately used. One such is

1 —

____

(4n)!(1,103+26,390n)

Jr

Yet a much simpler formula that Ramanujan produced to calcu-
late the value of it was

I 192 (
I =1 ' I =3.141592652...

22 22) 22 )
which is correct to only eight decimal places, but is relatively easy
to calculate.39

In 1946 D. F. Ferguson (England) discovered an error, as
noted earlier, in William Shanks's value of it in the 5 28th decimal
place. In January 1947 he produced a value for it correct to 710
places. Later that month, John W. Wrench Jr., an American, pub-
lished a value of it to 808 decimal places, but soon thereafter Fer-
guson found an error in the 723rd decimal place. In January 1948
the two collaborated on a correct value of it to 808 decimal places
with the help of a desk calculator. Still using only a desk calcu-
lator, the following year John W. Wrench Jr. and Levi B. Smith,
American mathematicians, extended this to 1,120 decimal places.

37. Two numbers are said to be relatively prime if their only common factor is 1 For example,

15 and 17 are relatively prime, since their only common factor is 1.
38. More about him in chapter 3.
39 All that needs to be done with a simple calculator is to take the square root of the square root of

that is,
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The Computer Enters the Story of it

In 1949, with the development of the electronic computer, the race for
the most decimal place values for it took on a fervor. Now computing
time was no longer a factor. We were not limited to human limitations.
Using seventy hours of computer time, the brilliant mathematicians
John von Neumann, George Reitwiesner, and N. C. Metropolis calcu-
lated the value of it to 2,037 decimal places, using an ENIAC computer.

And so the race was on. To inspect each of the methods used is
far beyond the scope of this book. Yet we can observe the gradual
progress with the help of the following table:4°

Year Mathematician
1954 S C Nicholson & J Jeenel

1954 G E Felton

1958 François Genuys

1959 François Genuys

1961 Daniel Shanks4' & John W Wrench Jr

100,265

1966 M Jean Guilloud & J Filliatre 250,000

1967 M Jean Guilloud & Michele Dichampt

500,000

1973 M Jean Guilloud & Martine Bouyer 1,001,250

1981 Kazunon Miyoshi & Kazuhika Nakayama

1982 Yoshiaki Tamura & Yasumasa Kanada

8 hours, 43 minutes

41 hours, 55 minutes

44 hours, 45 minutes

23 hours, 18 minutes

1982 Yoshiaki Tamura & Yasumasa Kanada

8,388,576 6 hours, 48 minutes

1988 Yoshiaki Tamura & Yasumasa Kanada

Gregory V & David V Chudnovsky

Gregory V & David V Chudnovsky

Gregory V & David V Chudnovsky

Takahashi & Yasumasa Kanada

Takahashi & Yasumasa Kanada

Takahashi & Yasumasa Kanada

Yasumasa Kanada

16,777,206

201,326,551

1,011,196,691

2,260,321,336

4,044,000,000

6,442,450,938

51539,600,000

206,158,430,000

1,241,100,000,000

Less than 30 hours

About 6 hours

Not known

Not known

Not known

Not known

About 29 hours

Not known

About 600 hours

40. For a more complete list of the development of the value of it, see the table on pages 75—77.

41. Daniel Shanks is no relation to William Shanks.

Number of place accuracy of it Time for calculation
3,092 13 minutes

7,480 33 hours

(Generated 10,021 places but only 7,480 were correct due to machine error)

10,000 100 minutes

16,167 4 hours, 20 minutes

2,000,036 137 hours, 20 minutes

1989

1992

1994

1995

1997

1999

2002
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The race for the most number of decimal places for it entered
the billions with the Chudnovsky brothers, David and Gregory.
Their story is a bit unusual. They emigrated to the United States
from the Soviet Union in 1978 after getting doctorates in mathe-
matics from the Ukrainian Academy of Sciences. They took an
apartment in Manhattan and rented two supercomputers to do their
calculations—bent on getting the most accurate value for it. There
were some problems along the way. Gregory, the younger by five
years, had myasthenia gravis, an autoimmune disorder of the mus-
cles, and had to stay in bed most of the time. He did most of his
work from his bed. Both brothers were married and for a time lived
off the earnings of their respective wives, while they pursued their
mathematical challenges. The expense of the supercomputers
forced them eventually to build their own—taking up much of their
apartment. In 1981 things got a bit easier when Gregory won a
MacArthur Foundation fellowship in mathematics. This provided
much-needed medical insurance and solved their immediate finan-
cial problems. Gregory continued to work from his bed, writing
mathematical formulas and pursuing the value of it, while also
breaking ground in a number of other areas of mathematics. This is
just one of many stories to be found in the rich history of it.

There are many unsolved problems in mathematics that beg for
solution in addition to the pursuit of it. Perhaps one of the simplest
to mention is known as Goldbach's conjecture. It states that any
even number greater than 2 can be expressed as the sum of two
prime numbers. This conjecture has plagued mathematicians for
over 250 years. Despite the fact that using computers we have been
able to show that the conjecture holds true for all even numbers so
far tested, we have not yet been able to come up with a proof that
will show it is true for all even numbers greater than 2. In a like
way, mathematicians have been driven to try to calculate it to ever-
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greater accuracy. Of course, from the point of view of usable accu-
racy, these incredibly long decimal expansions may seem unneces-
sary. However, as you will later see, there can be a use for these
decimal expansions, namely, as a table of random numbers, which
can aid in statistical sampling.42

As for continuously using computers to establish a greater
accuracy for it, it has now gotten to the point where computer sci-
entists are no longer just interested in pushing for greater accuracy
for the value of it; rather, they do this to test their computers. How
fast, how accurately, and how far can a new computer or computer
program calculate the value of it? Mathematicians and it enthusiasts
are always looking to extend our knowledge of it. They are inter-
ested both in extending the number of known decimal places and in
the cleverness of the program or algorithm used to generate these
record-breaking attempts. Computer scientists still find the algo-
rithms for the calculation of it ideal tools for testing high-powered
supercomputers. So, how far will the next level of accuracy take us
in our knowledge of it? And, of course, how much computer time
will be required? While these questions plague the computer scien-
tists, it enthusiasts are more interested in the product. Will greater
accuracy for the it approximation (now already over 1.24 trillion
decimal places) reveal new ideas about it? And will there be more-
elegant (and efficient) algorithms discovered for establishing these
approximations of it? Both groups of scientists push on, though
with different, albeit complementary goals.

42. This many not be an ideal table of random numbers since, as we mentioned earher, the fre-
quency of the digits is not consistent over equal periods
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Here is a summary of the history of the pursuit of the value of it:

Table of computation of Pi from 2000 BCE to the Present

Who calculated it When Number of decimal Value
place accuracy found

Babylonians BCE 1 3 125 = 3 + 1/8

Egyptians BCE 1 3 16045

China BCE 1 3

Bible (1 Kings 7 BCE 1 (4) 3 (3 1416)

Archimedes BCE 3 31418

Vitruvius 15 BCE 1 3 125

Hon Han Shu 130 CE 1 3 1622

Ptolemy 150 3 3 14166

142
Wang Fau 1 3 155555

Liu Hui 263 5 3 14159

Siddhanta 380 3 3 1416

355
TsuCh'ungChi

4 3

1 3

4 3

3 3 141818

Al-Kashi 1430 12

3 1415926535898732

Otho 1573 6 3 1415929

Viète 1593 9 3 1415926536

Romanus 1593 15 3 141592653589793

van Ceulen 1596 20

3 14159265358979323846

van Ceulen 1615 35

3 1415926535897932384626433832795029
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Newton 1665 16

3 1415926535897932

Sharp 1699 71

Seki Kowa 10

Machin 1706 100

DeLagny 1719 127 (only ll2correct)

Takebe 1723 41

Kamata 25

Matsunaga 1739 50

Von Vega 1794 140 (only l36correct)

Rutherford 1824 208 (only 152 correct)

Strassnitzky I Dase 1844 200

Clausen 1847 248

Lehmann 1853 261

Rutherford 1853 440

William Shanks 1873 707 (only 527 correct)

Ferguson 1946 620

Ferguson Jan 1947 710

Ferguson and Wrench Sep 1947 808

Smith and Wrench 1949 1,120

Reitwiesner et al. (ENIAC) 1949 2,037

Nicholson and Jeenel 1954 3,092

Felton 1957 7,480

Genuys Jan 1958 10,000

Felton May 1958 10,021

Genuys 1959 16,167

Daniel Shanks and Wrench 1961 100,265

Guilloud and Filliatre 1966 250,000

Guilloud and Dichampt 1967 500,000

Guilloud and Bouyer 1973 1,001,250

Miyoshi and Kanada 1981 2,000,036

Guilloud 1982 2,000,050
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Tamura 1982 2,097,144

TamuraandKanada 1982 4,194,288

Tamura and Kanada 1982 8,388,576

Kanada, Yoshino, and Tamura 1982 16,777,206

Ushiro and Kanada Oct 1983 10,013,395

Gosper Oct 1985 17,526.200

Bailey Jan 1986 29,360,111

Kanada and Tamura Sep 1986 33,554,414

Kanada and Tamura Oct 1986 67,108,839

Kanada, Tamura, Kubo et al Jan 1987 134,217,700

Kanada and Tamura Jan 1988 201,326,551

Chudnovskys May 1989 480,000,000

Chudnovskys Jun 1989 525,229,270

Kanada and Tamura Jul 1989 536,870,898

Chudnovskys Aug 1989 1.011,196,691

Kanada and Tamura Nov 1989 1,073,740,799

Chudnovskys Aug 1991 2,260,000,000

Chudnovskys May 1994 4,044,000,000

Takahashi and Kanada Jun 1995 3,221,225,466

Takahashi and Kanada Aug 1995 4,294,967,286

Takahashi and Kanada Sep 1995 6,442,450,938

Takahashi and Kanada Jun 1997 51,539,600,000

Takahashi and Kanada Apr 1999 68,719,470,000

Takahashi and Kanada Sep 1999 206,158,430,000

Kanada and nine-person team at University of Tokyo

Sep 2002 1,241,100,000,000

43. Using gematria—see chapter 1





Chapter 3

Calculating
the Value of ic?

Up to now we have described it and mentioned ways in which
attempts have been made to calculate its value. They varied from
highly intelligent (say, ingenious) guesses by mathematicians, to
attempts at performing calculations that were later proved impossible
(i.e., squaring the circle), to carefully planned constructions that
would yield the value of it if carried out far enough and carefully
enough. Some methods of calculating the value of it, strangely

enough, relied on probability, or in one case on mysterious insights.
Here we will provide you with a variety of methods for calculating the
value of it. We chose those that should be easily understood by the
general reader. Where a concept is used that may be a bit off the beaten

path, or simply unfamiliar to some, we provide some background
information. We will be presenting the classical attempts, rather than
those used in the more recent computer-driven methods. We begin

79
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with one of the most famous classical methods, by one of the most
gifted mathematicians in the history of mathematics, Archimedes.

Archimedes' Method for Finding the Value of it

Perhaps the easiest way to begin to calculate the value of it was devel-

oped by Archimedes. It is a method that can appeal to one's intuition. He

noticed that as the number of sides of a regular polygon increases, while

keeping the radius or the apothem' constant, the limiting value of the
perimeter is the circumference of a circle. That is, suppose we take the
first few regular polygons (an equilateral triangle, a square, a regular
pentagon, and a regular hexagon) and inscribe them in the same-size
circle. As the number of sides of the regular polygon increases, the
perimeter of the polygon gets closer and closer to the circumference (i.e.,

perimeter) of the circle. Remember that the circumscribed circle must

contain each of the vertices of the polygon. Here is what it can look like.
A

Fig. 3-la Fig. 3-lb

Fig. 3-ic Fig. 3-id

I The apothem is the segment from the center of a regular polygon to the midpoint of one of

its sides. It is perpendicular to the side.
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This may be easier to see when the regular polygon's sides
increase further so that it becomes a dodecagon (which has twelve
sides). We can actually calculate the increasing perimeters and see
them gradually approach the circumference of the circle.

Fig. 3-2

Let's take the hexagon as our example of a "general polygon."

From this we will then generalize to polygons of many more (or

fewer) sides. We begin with a regular hexagon inscribed in a circle

of radius The measure of L4OB is one-sixth of a complete rev-

olution of 3600, or 60°. Since OKJ..AB at K, BK = AK = a.

Fig. 3-3



82 Ic

We seek to find the perimeter of the hexagon, when we know

the length of the radius and the measure of

LAOK = 1(60°) = 300
2

Using the trigonometric function sine,2 we get

ZAOK = sin 30° = = 2a

2

Since sin 30° = then 2a = and a = The perimeter of the

hexagon is then 12 times a, which equals 3.

Let's generalize this for any regular polygon of n sides.

1 3600 180°zx = —. =
2 n n

Therefore, for the general regular polygon of n sides

180°sin— = 2a
n

The perimeter of the n-sided regular polygon is then n times 2a,
which makes this perimeter equal to

180°nsin—
n

We can then take various values of n and compute the perimeter of

the regular polygon whose circumscribed circle has a radius of

2. The sine function is defined for a right triangk as the ratio of the side opposite the angle in
question and the hypotenuse (the side opposite the nght angle).
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We shall work out the first few examples here and then provide
the results of others in a table.

When n = 3:

= 3sin6O° 3(0.866025403784438646763723 17075294)

= 2.5980762113533159402911695122588

When n = 4:

= 4sin4S° 4(0.70710678118654752440084436210485)

= 2.8284271247461900976033774484194

When n = 5:

= Ssin36° 5(0.58778525229247312916870595463907)

= 2.9389262614623656458435297731954

When n = 6:

6 sin =6 sin 30° = 6(0.50000000000000000000000000000000)

= 3.00000000000000000000000000000000
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We just calculated the first four entries in the table below and
here provide you with the remaining ones.

n Perimeter of inscribed polygon of n sides

3 2.5980762113533159402911695122588...
4 2.8284271247461900976033774484194...
5 2.9389262614623656458435297731954...
6 3.0000000000000000000000000000000...
7 3.0371861738229068433303783299385...
8 3.0614674589207181738276798722432...
9 3.0781812899310185973968965321403...
10 3.0901699437494742410229341718282...
11 3.0990581252557266748255970688128...
12 3.1058285412302491481867860514886...
13 3.1111036357382509729337984413828...
14 3.1152930753884016600446359029551...
15 3.1186753622663900565261342660769...
24 3.1326286132812381971617494694917...
36 3.137606738915694248090313750149...
54 3.1398207611656947410923929097419...
72 3.140595890304191984286221559116...
90 3.14095470322508744813956634628...
120 3.1412337969447783132734022664935...
180 3.1414331587110323074954161329369...
250 3.1415099708381519785686472871987...
500 3.1415719827794756248676550789799...
1,000 3.1415874858795633519332270354959...
10,000 3.141592601912665692979346479289...
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Now compare this 10,000-sided regular polygon (our last entry)

to the value of it that we already know. Remember it is inscribed in

the circle with radius This 10,000-sided polygon is optically

quite indistinguishable from the circle (obviously, without magnifi-

cation enhancements). The circumference of the circumscribed

circle of radius is 2irr = iv.

Look at the known value of it for comparison.
it —3.1415926535 8979323846 2643383279 5028841971

6939937510 5820974944...
Up to the seventh decimal place, the approximation with a 10,000-

sided regular polygon perimeter is correct. If we were to calculate the
perimeter of a regular polygon of 100,000 sides, we would get an even

closer approximation. The perimeter of a regular polygon of 100,000
sides is 3.1415926530730219604831480207531..., which approxi-
mates it correct to nine decimal places.

Archimedes (obviously) did not have the luxury of using elec-
tronic (or even mechanical) calculating devices to assist him in his
calculations.3 He also did not have the facility brought about by the
place value system (such as our decimal system), nor did he have
the use of trigonometry available to him. Yet he still used a 96-sided
regular polygon. He saw the circle as the limiting figure of an
inscribed circle as well as the circumcircle we just used above. By
taking the average of the perimeters of each pair of circles of n-
sided regular polygons, he would "sandwich in" the perimeter of
the circle, which in the case of a circle with radius of is it.

3. The mechanical calculator was invented by four mathematicians over a rather wide stretch of
time. Wilhelm Schickardt (1592—1635), a German mathematician, built the first digital calculator in

1623. Blaise Pascaal (1623—1662) built the first mechanical calculating machine in 1642 for his
father, who was a tax collector. The machine, called Pascaline, was commercially sold after 1645.
Gottfried Wilhelm Leibniz (1646—1716) developed a mechanical calculator in 1673 that failed during

a demonstration in London but nonetheless, because of the spectacular concept involved, was
accepted in the Royal Society. The English mathematician Charles Babbage (1792—1871), despite
devoting a greater part of his professional life to its development, never reached a completed product.
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Let us now repeat the above exercise with the polygon circum-
scribed about the circle, or, put another way, where the circle of
radius is inscribed in the polygon (i.e., the circle must be tangent
to each side of the polygon). As before, we will consider regular
polygons with successively greater numbers of sides, each with our
given circle inscribed.

Fig. 3-6

Notice how gradually the perimeter of the polygon appears to
get closer and closer to the circumference of the circle.

He began his work in 1812 and worked for decades on the project. In the end, the lack of precision

tools prevented him from achieving his "analytical engine" in 1833. His work was first realized in

the form of a working machine in 1944 when the IBM Corporation and Harvard University collabo-

rated to produce the Automatic Sequence Controlled Calculator.

A

C.

Fig. 3-4a Fig. 3-4b

4 I,

.s
,.

.4

Fig. 3-5
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This time we will consider a regular pentagon circumscribed
about our circle of radius as our first polygon to study. Then we
will generalize our procedure and extend it to many others.

Our objective is to find the perimeter of the pentagon with a
side of 2a. We know that

tan LAOK = —f— m LAOB = 72°
OK

so that

mL4OK = 36°, while OK =
2

Therefore,

a = tan 36° !(0.72654252800536088589546675748062)
2 2

= 0.36327126400268044294773337874031

4. The tangent function is defined for a right tnangle as the ratio of the side opposite the angle

being considered to the side adjacent to this angle.

Fig. 3-7
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Thus the perimeter of the pentagon is 10 times a, or about
3.6327126400268044294773337874031 (this is found by taking 5

times 2a, or about 3.6327), not yet a very close approximation of it.
The circumference of the circle is 2irr = iv.

In the general case of a regular polygon of n sides

1 3600 180°mLAOK=-.
2 n n

From the example of the pentagon, tan LAOK = It fol-
lows that

a = OK tan LAOK • tan
2 n

The perimeter of the polygon is then

1 180° 180°n.2a = n.2.—.tan——-- = ntan—
2 n n

As before, we will calculate the perimeters of the various polygons,

this time, though, circumscribed about our circle with radius

We already have the calculated perimeter for the pentagon, so
we will do the calculation for the hexagon now.

When n = 6:

n 6 3
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For more than four decimal places we get the following:

n Perimeter of circumscribed polygon of n sides

3 5.1961524227066318805823390245176...

4 4.0000000000000000000000000000000...

5 3.632712640026804429477333787403 1

6 3.4641016151377545870548926830117...

7 3.3710223316527005103251364713988...

8 3.3137084989847603904135097936776...

9 3.2757321083958212521594309449915...

10 3.2491969623290632615587141221513...

11 3.2298914223220338542066829685944...

12 3.2153903091734724776706439019295...

13 3.2042122194157076473003149216291...

14 3.1954086414620991330865590688542...

15 3.1883484250503318788938749085512...

24 3.1596599420975004833166349778332...

36 3.1495918869332641879926720996586...

54 3.1451418433791039391493421086004...

72 3.1435878894128684595626030399174...

90 3.1428692542572957450362363196353...

96 3.142714599645368298168859093772 1

120 3.1423105883024314667236592753428...

180 3.141911687079165437723201139551...

250 3.1417580308448944353707690613384...

500 3.1416339959448860645952957694732...

1,000 3.1416029890561561260413432901054...

10,000 3.1415927569440529197246707719118...
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Again you will notice how the more sides the polygon has, the
closer its perimeter gets to the circumference of the circle—which
we now know is it.

Archimedes, as we said before, saw the inscribed and the cir-
cumscribed polygons "sandwiching in" the circle, as seen below by
the inscribed and circumscribed dodecagons (n = 12).

He essentially suggested taking the average of the two perime-
ters for each type of polygon to get a better approximation of it.

2 II 1511159402911695122588

2 028427l24746l900976011774484I94

2 91092626l46216564SM1S29771I954
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The average of the two perimeters (the right-hand column) is
closest to the value of it for each type of polygon. When Archimedes
did these calculations, he didn't take as many examples as we did
here. He began with two regular hexagons, then doubled the number
of sides, using two dodecagons (12-sided polygons), then used two
24-gons,5 then two 48-gons, and then two 96-gons.

Although his calculations were probably not as accurate as ours
are, and we do not have a record of how he did his calculations, he
did conclude from the 96-gon that the ratio of the circumference of
a circle to its diameter—which is it—is greater than 3 and less
than 3 We can write this symbolically as

10 1

3—<,r<3—
71 7

For comparison to the above, this is

3.1408450704225352112676056338028... <it <
3.1428571428571428571428571428571...

We have come a long way since Archimedes' ingenious methods.
As we noted earlier, we can now calculate it to many more places than

ever thought possible; however, this "primitive" method gives much
intuitive insight into what this ratio that it represents really is.

A Reverse Method to Archimedes by Cusanus

Archimedes had used inscribed and circumscribed regular polygons
within and about a given circle, each time increasing the number of
sides. The argument was that as the number of sides of the polygons

5 24-gon is a short way of referring to a 24-sided polygon.
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increased, the circumference of the circle, "sandwiched" between the
two polygons, was the limiting value of the polygon.

An analogous method developed by Nicholas of Cusa
(1401—1464) has us "sandwiching" in regular polygons with
increasing numbers of sides by inscribed and circumscribed circles.
Nicholas of Cusa6 took his name from his hometown of Cues
(today Kues) on the Mosel River in Germany. By today's assess-
ments, he is considered one of the pioneering German thinkers in
the transition from the Middle Ages to modern times, yet he was
not too well known as a mathematician. He was better known for
his substantial career in the church. He became a cardinal in 1488
and was bishop of Brixen (northern Italy) and a governor (or vicar
general) of Rome. As a mathematician, he made ill-fated attempts
to square the circle7 and to trisect the general angle,8 both of which
we now know are impossible. As with many mathematicians fasci-
nated with one of the three "famous problems of antiquity," namely,
squaring the circle, Cusanus's attempts led him to a fine approxima-
tion of it. Let's take a look at what Cusanus achieved in these
attempts. We will demonstrate this here, but in more modern terms.

In 1450 Cusanus nested a given regular polygon with the fixed
perimeter 2 with inscribed and circumscribed circles. He used a
sequence of the regular n-gons (n = 4, 8, 16, 32, ...).

6. Sometimes referred to by his Latin name, Cusanus.
7 One of the three famous problems of antiquity—no longer a problem today—is how to "square

a circle." That means how to construct (with on'y an unmarked straightedge and a pair of compasses)

the side length of a square equal in area to a given circle. Today, we know this to be impossible.

8. Another of the three famous problems of antiquity—no longer a problem today—is how to "tri-

sect an angle." That means how to construct (with on'y an unmarked straightedge and a pair of compasses)

angle trisectors of a general angk—not any specific number of degrees, for it would be possible for some

special angles, such as a right angle Today, we know this general angle tnsection to be impossibk
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Fig. 3-9

Let's begin as Cusanus did by starting with a square (which
may, of course, be referred to as a regular 4-gon). We will call the
perimeter of the square p4. Since each side of the square is a4=
then p4= 4.a4 =2.

Consider the inscribed circle with circumference and the
circumscribed circle with circumference C. of the square pic-circum

tured above. The radius of the inscribed circle is

h4 = 24
The radius of the circumscribed circle is

r4 =
+ =

0.3535533905

We can plainly see that the perimeter of the square is somewhere
between the circumferences of the two circles, so we can compare the
perimeter, p4, and the two circumferences, and to get

<p4 < or 2m h4 < 2 < 2m r4

Dividing all terms by 2 gives us

it < 1 <it r4
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Then dividing all terms by it we get

h4 <

Taking the reciprocal values of each of the terms reverses the
inequality, so we get

—<it< —
r4

Since r4 = it follows that 2.828427 13 and 4. There-
fore 2.82842713 <it <4, a rather rough approximation for the value
of it. But wait, as we increase the number of sides of the regular
polygon, the estimates should get better.

The next approximation was done by doubling the number of
sides of the regular polygon we just used to get a regular octagon.
Cusanus considered a regular 8-gon with h8 as the radius of the
inscribed circle with circumference and r8 as the radius of the
circumscribed circle with circumference Ccjrcum•

Since each side is a8= the perimeter, p8, of the regular 8-gon

is = 8 a8 = 2.

Fig. 3-10

A
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mLAMB = 450, therefore, mLAMC = 22.5°

a8

tan LAMC= tan 22.5°

This can then be transformed into the following equation:

= a8 = 4 = 1 = 1

0.3017766952
2tanZAMC 8

With the Pythagorean theorem, r82 = h + we get

r8 0.3266407412

For the perimeter, p8, and circumferences,

C1 Ccircum or 2it h8 < 2 < 2ir r8

Dividing both sides by 2, it follows that ith8 < 1 <icr8, which, when
dividing each term by it, yields h8 r8.

9. Tan 22.5° = — 1 can be obtained by applying a theorem from the high school course to an isosceles right
triangle with one of its base angles bisected to get 22.5°

The theorem states that the angle bisector of a triangle divides the side to which it is drawn proportionally to
the two adjacent sides Hence,

I—x— =
I x

Rationalizing the denominator gives us

•
2-1

10. This was obtained by rationalizing the denominator, that is, by multiplying by I in the form of
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Again, taking the reciprocal of each term reverses the inequality
to give us

1 1

—<ir<—
h8

That means for the reciprocal values

= 4 — 3.061467458

and 8 — 1) 3.3 13708498

We finally have a more accurate value range for it:

3.061467458 <it < 3.3 13708498

We will now take a giant leap to the general case, where we will
try to sandwich in the value of it. This may be a bit complicated for
the reader no longer familiar with some of the intricacies of high
school mathematics, yet it is the conclusion of this generalization
that is of greater importance than the process.

For the general case, is the radius of the inscribed circle with
circumference C. and r is the radius of the circumscribed circle
with circumference Ccjrcum of a regular n-gon (n = 4, 8, 16, 32, ...).
We have established above that

1 1

—<7c<—
h,1

In this way one can generalize nested intervals for it, if one
iteratively" determines the radii of the inscribed and circum-
scribed circles with increasing numbers of sides of the regular n-

I I Iteration k a computational procedure in which the desired result is approached through a
repeated cycle of operations, each of which more closely approximates the desired result
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gon (with the perimeter 2).
How did Cusanus get his iteration method? To explain this, we

look again at a regular n-gon (n = 4, 8, 16, 32, ...):

Fig. 3-11

We assume AB = a MA = MB = r and MH = h . After dou-
n n n

bling the number of sides of the polygon, we get the regular 2n-gon.

Here P is the midpoint of the arc AB, and X and Y are the midpoints

of the sides AP and BP in the triangle MBP. Therefore, XY =

XY is the side of the regular 2n-gon with the perimeter 2 and the

center M. It follows that MP = MA = MX = MY = and MQ =

(compare the cases where n = 4 and 2n = 8 in the above figure).
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Because Q is the midpoint of the segment PH, we have
j,

2n 2

In the right triangle L\MPX it follows that = MQ MP.'2
This may be written as = . which then leads to

To generate the values for the rest of the n-gons (where n =
16, 32, 64, etc.), we can use the general case. We use the fol-
lowing general terms:

1

h4 = —; r4 = (start values)

= +
= • (iteration

These yield the following table of values:

n h r
fl fl r,, h,

4 025 03535533905 2828427124 4

8 03017766952 03266407412 3061467458 3313708498
16 03142087182 03203644309 3121445152 3 182597878

32 03172865746 03188217886 3 136548490 3 151724907
64 03180541816 03184377538 3140331156 3144118385
128 03182459677 03183418463 3 141277250 3142223629
256 03182939070 03183178758 3 141513801 3 141750369
512 03183058914 03183118835 3 141572940 3 141632080
1024 03183088874 03183103855 3 141587725 3 14160251()

2048 0.3183096365 03183100110 3 141591421 3 141595117

4096 03183098237 03183099173 3 141592345 3 141593269
8192 03183098705 03183098939 3 141592576 3141592807
16384 03183098822 03183098881 3 141592634 3 141592692
32768 03183098852 03183098866 3 141592648 3 141592663

We have achieved seven decimal places accuracy for the value
of it: 3.1415926. Here for puposes of comparison is the value of it
correct to thirty-one decimal places:

it = 3.1415926535897932384626433832795...
12 This comes from similar triangles MXP and MQX, or by applying the familiar mean pro-

theorems.
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While the method of Archimedes relies on the trigonometric
functions sine and tangent, the method of Cusanus depends only
on elementary theorems like the Pythagorean theorem, simi-
larity, and the basic definition of the trigonometric functions.
Furthermore, the arithmetic and geometric means are used for
the iteration:

A(x,y) = X + = + h,
=

Calculation of the Value of it by Counting Squares

It is always challenging to determine the actual value of it. There
isn't any arithmetically comfortable method for calculating the
value of it. On the one hand, we only need an elementary knowl-
edge of mathematics for the following methods, but, on the other
hand, these approximations of the value of it are not as exact as the
calculations done by Archimedes or Cusanus. We offer here a few
relatively simple methods for calculating the value of it.

To determine the area of a circle, we can cover it with a lattice
of squares (each with a side of length 1), and we will count the
number of squares (a) in the interior of the circle. We then will
count the number of squares (b) that are intersected by the circle's
circumference.

We will assume13 that one-half of the area of these intersected
squares lies in the interior of the circle, and the other half of the area
of these intersected squares lies outside the circle.

13. it is thk assumption that will limit our accuracy of the approximation of it.
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So we have a + as an approximate value for the area of the
circle. Let's consider this with the following example.

Example 1:
Circle with the radius r = 8

a = 14 6 + 12 4 + 10 2 + 6 2 = 164

Fig. 3-12

By the known method (using the formula for the area of a
circle) we get

Area circle = it r2 3.14 .82 = 200.96

Now using the counting method, we get the following result,

which compares favorably with the traditional method above.

Approximate value: Area circle a + = 164 + 30 = 194,

which is close to the "actual" 201 found by the formula.

This approximation leads to it as follows: The approximate area

of the circle is 194. This should then be equal to 82 iv = 64ir, so that

64ir 194. This gives a value for 3.03 125.

The approximation of it becomes better when a larger number

of squares is used, say, when r = 10:

b = 60



Calculating the Value of it

Example 2:

Circle with the radius r = 10

Fig. 3-13

Areacircie = it •r2 3.14.102 = 314

101

Approximate value: Area circle — a + = 276 + 34 = 310,

which is now closer to the "actual" value, 314, as determined by the

formula above. Again, Area circle = 310 =102,r= lOOir. Thus,

= 3.1, which compares favorably to the previous approximation.

Instead of the whole circle, it suffices to look at a quadrant,
count the respective squares, and then quadruple it.

Calculating the Value of it by Counting Lattice Points

The method used by the German mathematician Carl Friedrich
Gauss (1777—1855) is relatively simpler. Instead of counting the
number of squares, he determined the area of a circle by counting
the number of lattice points of the square lattice in the interior of
the circle. Lattice points are points with integer coordinates. We can

-r

a= 18 8+164+14 2+12 2+8 2=276 b = 68
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locate all the lattice points of the circle with radius r with x2 + y2 �
r2 (the Pythagorean theorem).

If f(r) represents the number of lattice points that lie in the cir-
cular area with the radius r, then we get (with the help of Gauss's
idea) an approximation for it:

1(r)
r2

This should bring back thoughts (especially if you were to mul-
tiply both side of this "almost-equation" by r2) of the now-famous
formula for the area of a circle, Area = ,rr2. Here we have

There is a formula for finding f(r), but this formula is compli-
cated. Instead, we will give some examples. Consider the fol-
lowing.

Example:

f(r)= theitfore,

• - -—-:•,!
iIprlH4

= =4=. _r:
• '. ——

: : : : :IT . :

= : :r: : : :

Fig. 3-14
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Instead of the whole circle, it suffices to look at a quadrant and
to Count the respective lattice points again. (Be careful to count the
origin only once.)

-- -flfl
'

\
-

— — — — — — — — —

Further values:

fir) 81 317 1.257

&! 324 317 31425

2.821 31.417 125.629 282.697

3 134 3 1417 3 140725 3 14107

31.4 15.925.457

3 1415925457

It appears that this sequence heads for
3. 1415926....

the actual value of it,

For r = 20, we already get the correct second place after the
decimal point. Strangely enough, for r = 30 the value of it gets less
accurate, but then eventually gets closer to the true value of it.

Using Physical Properties to Calculate the Value of it

A physicist might determine the value of it by using what may be
considered a simpler method than was involved with the tedious
task of counting squares or lattice points.

Fig. 3-15

r 5 10 20 30 100 200 300 ... 100,000
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He would weigh (as exactly as possible) one circle with a radius
of 10 cm, which he would Cut out of an evenly thick piece of card-
board. Then he would compare its weight (or its mass) with that of
a square (of 10 cm length side) cut out of the same material.

We now compare the area of the circle, radius r, to the area of
the square, side 2r, by considering their weights)4

= Therefore, 3.141594.Irr itT

In the eighteenth century, the French agronomist Franzose
Olivier de Serres "proved," by using a scale, that a circle weighs as
much as a square whose side has the length of that of an equilateral
triangle inscribed in the circle—this assumes that both figures are
cut out of the same material. When you follow the discussion
below, you will see that this implies that it = 3!

14. Technically speaking, we actually have a cylinder and a rectangular solid, if one were to
consider the width of the cardboard as the height of these objects.

15 Actually a constant value

2'

Fig. 3-16
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in MDM: mZDAM = (600) = 300

sinLDAM = therefore, x =

Area of the square = a2 =(rsfi) 3 r2

Area of the circle = ,t r2

We can then conclude that it = 3.

Fig. 3-17

The Monte-Carlo Method to Determine the Value of it

The Monte-Carlo method'6 is a procedure that makes use of prob-
ability, calculus, and statistics to form a summary to establish facts
with a large number of tests for a random experiment. The Buffon's
needle problem (see chapter 1, pages 38—39) is considered one of
the Monte-Carlo methods.

Another such procedure can be simulated by means of rain-
drops that fall on a predefined square, or similarly by using a
number of random dart throws. This "dartboard algorithm," which
can be used in a school setting, shall serve as an example here.

To do this, a chance rain is simulated and the hits counted
within and outside the inscribed circle (with radius of length I) on
a square with side length 2. Using dart throws, instead of raindrops,
may be a better procedure. With the following considerations, one
then reaches a possibility to determine the value of it.

16 The name is taken from the gambling paradise
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The relationship between the hits in the circle and the complete
number of throws yields an approximation for it:

— — iv

ASQ — 4r2 — 4

Fig. 3-18

probability (circle hits) = numberofcirclehit.s

4 number of throws

The method yields a good approximation for it only after a
very large number of throws. The randomizer (the dart thrower
or water dropper) must produce really coincidental numbers and
may not be subject to any regularities, that is, the person may not
influence where the darts or water droplets fall.

square
side:

area:

circle
radius:
area:

2r=2
ASQ = (2r)2 = 4

r=l
= it. r2 = it
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Fig. 3-19

For the first quadrant we get, for example, in the case of ten
throws, that the first and the fourth throws don't satisfy the condi-
tion x2 + y2 � 1. Therefore, since two points are outside the target
region, only eight points are drawn:

Fig. 3-20

1-s

—1.5 1-s

—1.5

0.5
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For the calculation of the ratios of the areas, a Monte-Carlo
integration is now used. One may proceed as follows:

• With a random numbers generator, an x and a y value between
0 and 2r are "thrown."

• The Pythagorean theorem is used to check if the thrown point
P(x, y) lies within or outside the circle.

• The hits in the circle are counted.

• The procedure is repeated—the more often repeated the more
accurate the expected value of it will be.

Calculating it from a Series of Numbers

Earlier we considered the following formula for it, which was
developed by the famous German mathematician Gottfried Wil-
helm Leibniz (1646—1716), who, together with Isaac Newton, is
credited with developing the modern calculus:

Jr 11111
—=1——+———+———+...
4 3 5 7 9 11

Leibniz, who is also considered one of the great philosophers of
the Western world, commented on the unusual connection between
the number it and the pattern of alternately adding and subtracting
odd unit fractions with the words "Numero deus impare gaudet"
(God is happy with the odd number).

We mentioned then that it approaches the value of it rather
slowly, since it will take one hundred thousand terms to get to a
five-place accuracy of it, and for six-place accuracy we will need to
carry this series out for one million terms.



n

2 4.(l_!
3

( II 4•il——+—35
I III

4 4.1 1—--+--—--357liii
5 4.! 1——+———+—3579

I I I I I
6 4.! 1——+--—--÷--——

3 5 7 9 11

I I I I I I

7 4.! I——+———+———+—
3 5 7 9 11 13liii I

8 4.1
3 5 7 9 II 13 15

I I I I I I I I
9 4.! 1——+———+———÷———+—

1 5 7 9 11 13 15 17

( I I I I I I I I

10 4.1 1——+———÷———÷———÷———
3 5 7 9 11 13 15 17 19

1(X) 4.(I_!+!_!+
3 5 7 199

17 This expression is merely a mathematical shorthand way of writing the series.
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Let's take a look at how this series "behaves." We multiply
both sides by 4:

17

3 5 7 9 11 13 15 ) =2i—1

Partial Sum Exact Value Approximate Value
4.1 4 4

52

15

304

105

1,052

315

10,312

1,465

147,916

45.045

35,904

45.045

2,490.548

765.765

44,257,352

14,549,535

numerator and
denominator have 88 places
(see below)

2 666666666

3466666666

2 895238095

3 339682539

2976046176

3283738483

3017071817

3 252365934

3041839618

3.131592903

3.131592902

3.141492653

3.141582653

1,()OO 4.11——+--——±
3 5 7 1,999

10,00() 4.II——+———±
1 5 7 19,999

100,00() 4. !÷L!±
3 5 7 199.999

From the chart above, when n = 100 (exact value):
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The approximation value "jumps" back and forth around the
actual value of it, since the terms are adding or subtracting alter-
nately; it is, therefore, alternately bigger or smaller than it.

We compare the approximate value for n = 100,000 (the last entry

in the chart) with the correct value of it = 3.1415926535897932384...,

and we have indeed (only) four correct places. Then as we increase
the value of n, the approximation for it becomes increasingly more
accurate (i.e., closer to the true value of it).

n = 1,000,000: approximation value = 3.141591653

n = 10,000,000: approximation value = 3.141592553
n = 100,000,000: approximation value = 3.141592643

A Better Series Calculation for the Value of it

There are other series that converge'8 to the value of it faster than
the Leibniz series.

Earlier we mentioned the following formula for deriving the
value of it, which was discovered by the famous Swiss mathemati-
cian Leonhard Euler:

1 1 1 1—=1+—+—+—+—+...
6 22 32 42

or (after multiplication by a 6 and square root extraction):

I ( 1 1 1 1 I

16.1 1+—+—+—+—+•..I=
22 32 42 )

This formula is sensationally fast in comparison to that of
Leibniz. In the case of the Leibniz series, the computer needed

18 To "converge," in this sense, means to approach a particular va'ue as a 'imit
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more than two and a half hours for n = 108; the Euler series'9
delivers the accompanying approximation value for n = 108 in vir-
tually zero seconds of computer time!

The approximate values of it are about the same quality as
before. For n = 108 we get eight-place accuracy: it 3.141592644.
Let's take a look at some partial sums:

ii Partial Sum Exact Value Approximate Value

I 2 449489742

2 27386127872) 2

3 285773803323) 6

4 2922612986
2 3 4-) 12

5 2963387701
2 3 4 5) 60

0 /6.11÷1÷1+ fl 3049361635
2

3 9 0 ) 2.520

1(X) ÷—-+—----) SeeBelow* 3.132076531
2 3

99 100)

.0(X) 6.11 + _!_ + _!_ + + + 3.140638056
2 3 999- I.0O()

IO,00() 6.1I+_!_+_+ 3.141497163
2

3 9,999- 0,000

00,0(X) 6.1I+—+—+ +—+ 3.141583104
2 3

99,999 00,000)

I,00(),(X)0 6. +_!_÷_!_+ 3.14159169832

0.000.0(X) /6. ÷_!_÷_÷ ÷—-- 3.141592558
2- 32

00.000.000 ÷1÷1÷ 3.141592644
2' 3' (iofl)

I,000.00(),(X)0 /6. 3.14159265232
(10)

* n = 100 (exact value):

19. Eukr also found the sums of the reciprocals of the fourth and sixth powers (by the way, to
date no one has been able to do this for third
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For purposes of comparison, here is the value of it:

it = 3.1415926535897932384...

The Genius's Method for Finding the Value of it

The extraordinarily brilliant Indian mathematician Srinivasa
Ramanujan (1887—1920) made contributions to the generation of
the value of it but left little evidence on how he arrived at his
results. Born in 1887 in the small south Indian town of Erode,
Ramanujan spent his youth fascinated with mathematics to the
detriment of other subjects. As the fledgling Indian Mathematical
Society was being founded, it provided a forum for Ramanujan to
exhibit his mathematical prowess. For example, in 1911 he posed
problems based on his earlier work and found no solvers among the
readership. One such example was to evaluate

which appeared harmlessly simple, but yet found no successful
solvers. The trick was found in his notebook of theorems that he
established. Here, he simply applied the following theorem, which
said that if you could represent a number as (x + n +a), the above
expression could be represented as

x + n x n = 1, and a = 0, then the
value of this nest of radicals is simply equal to 3. This is nearly
impossible to do without knowledge of Ramanujan's theorem.
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With this new exposure, he wrote to three of the top mathe-
maticians in England, E. W. Hobson, H. F. Baker, and G. H.
Hardy.2° Of these three Cambridge professors, only Godfrey
Harold Hardy (1877—1947) responded and ultimately invited
Ramanujan to England. Hardy thought that the statements con-
tained in the letter had to be correct. For, if they were wrong,
nobody would have had such a wild imagination to make them up.

Despite a clash of cultures, the two got along very well and
mutually assisted each other. This was the beginning of
Ramanujan's popularity outside India. It should be remembered
that, even though wearing shoes and using eating utensils were
new to this Indian, he came from a long heritage of mathemat-
ical culture. The Indians were using our numeration system
(including the zero) for over a thousand years before it was
introduced in Europe with the publication of Fibonacci's book,
Liberabaci, in 1202.

20. The letter to Hardy, dated "Madras, 16th January 1913" and which enticed Hardy to
respond, was the following

Dear Sir,

I beg to introduce myself to you as a clerk in the Accounts Department of the Port Trust Office
at Madras on a salary of only £ 20 per annum. I am now about 23 years of age. I have no University
education but I have undergone the ordinary school course. After leaving school I have been
employing the spare time at my disposal to work at mathematics. I have not trodden through the con-
ventional regular course which is followed in a University course, but I am striking out a new path
for myself. I have made a special investigation of divergent series in general and the results I get are
termed by the local mathematicians as "startling.".

I would request you to go through the enclosed papers. Being poor, if you are convinced that
there is anything of value I would like to have my theorems published. I have not given the actual
investigations nor the expressions that I get but I have indicated the lines on which I proceed. Being
inexperienced I would very highly value any advice you give me. Requesting to be excused for the
trouble I give you.

I remain,

Dear Sir,

Yours truly,

S. Ramanujan.
(As repnnted in Robert Kanigel, The Man Who Knew Infinity: A Life of the Genius Ramanujan

[New York: Charles Scribner's 5ons, 19911, pp. 159—60.)
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In our context, Ramanujan came up with some amazing results
in the determination of the value of it. He empirically (his word)
obtained the approximate value of it with the following expression:

1
1 1

( 2
19fl4 (19 +—l =181+—I =1
22) 22) 22

=

3.141592652582646125206037179644022371557...

He further stated that the value he used for it for purposes of
calculation was

—
3.1415926535897943...

113k 3,533)

which he went on to say "is greater than it by about 10-15" and "is
obtained by simply taking the reciprocal of

i_fl 1,776,666.61854247437446528035543.
•

355 )

The more ambitious reader can find the justification for this work
in appendix B.

Srinivasa Ramanujan gave us other uncanny approximations of
it. Even today we are mystified by how he arrived at the various
results. Although we are becoming more able to understand his der-
ivations, we still cannot fully appreciate the complexity of the way
his unique mind functioned. The following are some of his findings
on the value of it.

21 Srinivasa Ramanujan, "Modular Equations and Approximations to it," Quarterly Journal of
Mathematics 45 (1914): 350—72. Repnnted in S. Ramanujan: Collected Papers, ed. G. H. Hardy, P.
V Seshualgar, and B. M. Wilson (New York: Chelsea, 1962), pp. 22—39.
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In chapter 2 we have already mentioned the following formula:

1

iv — 9,801 (n!)4

Another formula is

1 —

n )
212n+4

The following are some approximations of it that are due to
Ramanujan:

355 . . .3.141592920 was originally discovered by Adriaen Metius
and later Ramanujan gave a geometric construction

for this term.

3.141640786

16
3.141829681

Some series discovered by Ramanujan follow. However, the
important point is that evaluating such series to huge numbers of
digits requires developing specific algorithms.

1 (4k)! (1,103+26,390k)
[Ramanujan]

it 994k

1 k (6k)! (13,591,409+545,140,134k)
—=12 (—1) [Chudnovskyl

(3k)!(k!)3

15 17
22. He and his father, Adriaen Anthoniszoon (c. 1600), took the approximation 3 <it < 3

added the numerators (15 + 17 = 32) and the denominators (106 + 120 = 226), took the means (16 and

113), and gave it = = = 3.1415929, a very close approximation. (D. E. Smith, History of Math-

ematics, vol. 2 [New York: Dover, 1958])
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Here are some more of the wondrous discoveries by the genius
Ramanujan that you may wish to ponder.

3 3

2 (1 (1.3 (1.3.5
—=1—SI—I +91—I —131 1+...
it

2 2 2 2

4 1 1 1 1.3 ) ( 1.3.5
—=1+1—I +1—i +1 I +1 I +... [Forsyth]
itii (4k)! (23+260k)
it — 182k

(4k)! (1,123+21,460k)

it — 8822k

1 (6k)! (A+Bk)
—=12

C

In the last formula

A = 1,657,145,277,365 + 212,175,710,912

B = 107,578,229,802,750 = 13,773,980,892,672

C = 5,280 (236,674 + 30,303)

and each additional term in the series adds about thirty-one digits.
We have seen numerous ways that the value of it was calcu-

lated. Some were primitive, while others were quite sophisticated.
Most remarkably are those that would have appeared to have
evolved from spectacular guesses. Today's methods all involve the
computer, and how accurate the future calculations of the value of
it will be is going to be merely limited by man's creativity and the
computer's ability.



Chapter 4

m Enthusiasts

Popularity of it

it is so fascinating and one of the most popular numbers in mathe-
matics for a variety of reasons. First, just understanding what it is
(chapter 1) and what it represents and how it can be used has
intrigued mathematicians for ages. Its history (chapter 2) over the
past four thousand years, spanning the entire globe, has provided
amusement and discovery as well as an ongoing challenge.
Building upon the continuous attempts at getting ever-more-exact
values of it by seeing how many decimal places computers can gen-
erate, and how fast they can do it, has become the challenge today
for computers and computer scientists, rather than for mathemati-
cians, who still search for more elegant (and efficient) algorithms to
accomplish these tasks. Now that we are in the trillions of decimal

117
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places, who knows how far we are going to push a computer's
capabilities? This seems to be the ultimate test for a computer.

There is a unique curiosity where the enthusiasm for it is

demonstrated for all to see. In 1937, in Hall 31 of the Palais de la
Decouverte, today a Paris science museum (on Franklin D. Roo-
sevelt Avenue), the value of it was produced with large wooden
numerals on the ceiling (a cupola) in the form of a spiral. This was
an inspired dedication to this famous number, but there was an
error: they used the approximation generated in 1874 by William
Shanks, which had an error in the 528th decimal place. This was
detected in 1946 and corrected on the museum's ceiling in 1949.

There are many Web sites where it enthusiasts gather to share
their latest findings. In the United States, these it lovers celebrate
March 14 as it-day, since as noted it is 3-14. And at 1:59, they
jubilate! (Remember iv = 3.14159. . . .) What a coincidence that
Albert Einstein was born on March 14, 1879: we can see that this
number, 3.141879, is a good approximation of it. Other similar
coincidences are constantly found by these it enthusiasts. There are
ever more Web sites that help the it-day celebration. Here are just
two to begin with: http://www.exploratorium.edu/pi and
http://mathwithmrherte.com/pi_day.htm. Here also is the
Exploratorium's (San Francisco) announcement of their it-day cel-
ebration—celebrating the most famous person born on that day!
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Apparently anything goes when it comes to celebrating it-day.
Pose the following question to a mathematician: "What are the

next numbers in the following sequence?"

3, 1,4, 1,5,

The answer may well be that you have is interspersed in the
sequence of natural numbers. So the next numbers would be

3,1,4,1,5,1,6,1,7,1,8,1,9,...

However, pose this question to a it enthusiast and the response
is surely to be

3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,...,

which, of course, is the value of it (approximately!) This is indica-
tive of the mind-set of it enthusiasts.

The digits of the decimal value of it have been a topic of fasci-
nation for centuries. The quest goes on unabated to increase the
number of known decimal places of it. Having generated this seem-
ingly endless list of digits comprising the decimal form of it, math-
ematicians and math enthusiasts have sought ways to find patterns
and other entertaining oddities with this number. As with any end-
less randomly generated list of numbers, you can make just about
anything happen within them that you may wish. Here we present
a small sample of some of these recreations and oddities.
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it Mnemonics

One of the simplest forms of entertainment with this decimal list of
digits is to show how many decimal places of the value of it you can
commit to memory. Some people like to show off by simply mem-
orizing the first ten, twenty, thirty, or more decimal places. Others
who may not have such sharp powers of memory try to create
mnemonic devices that will allow them to more easily memorize
this list of digits. For your entertainment, we will provide you with
a number of these mnemonic devices in a variety of languages, yet
from personal experience, a straight memorization of the digits
practically lasts forever. Memorize the first twenty-five digits
without any device and you will never forget them.

Most of the mnemonic devices for memorizing the decimal
value of it require finding somewhat meaningful sentences where
the number of letters per word determines the digit.

Although by now most of you have seen the value of it many
times, for convenience the first fifty-five decimal places are pro-
vided here: 3.14159 26535 89793 23846 26433 83279 50288
41971 69399 37510 58209...

One such sentence used by a number of mathematicians
(including Martin Gardner and Howard Eves) is "May I have a large
container of coffee?" giving the value 3.1415926, where the three let-
ters of "May" give the digit 3, the one letter "I" gives the digit 1, the
four letters of the word "have" give us the digit 4, and so on. A
mnemonic that will give us the digits for the first nine decimal places
(3.14159265) of it is "But I must a while endeavour' to reckon right."
We can get digits for the first fourteen decimal places
(3.14 159265358979) from the sentence "How I want a drink, alco-
holic of course, after the heavy lectures involving quantum

British spelling.
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mechanics," which is attributed to James Jeans, Martin Gardner,
Howard Eves, and others. A clever mathematician (S. Bottomley)
extended this sentence with the phrase "and if the lectures were boring

or tiring, then any odd thinking was on quartic equations again,"
giving us seventeen additional digits and thus the value of it to thirty-

one decimal places (3.1415926535897932384626433832795).
People in many countries (and, of course, in a variety of lan-

guages) have created poems, jokes, and even dramas where the
words used are based on the digits of it. For example, "See, I have
a rhyme assisting my feeble brain, its tasks sometime resisting."

We offer here a small collection of such mnemonics, some of
which, with the exception of ChiShona and Sindebele, are from the
Internet Web site of Antreas P. Hatzipolakis.

Albanian: Kur e shoh e mesoj sigurisht.
[When I see it, I memorize it for sure.I (Robert Nesimi)

Bulgarian: Kak e leko i bqrzo iz(ch)islimo pi, kogato znae(sh)
kak.

[How easy and quickly was checked pi if you know how.I
(Note: 'ch' and 'sh' are single letters in Bulgarian.)

ChiShona (official language of Zimbabwe): lye 'P' naye 'I'
ndivo vadikanwi. 'Pi' achava mwana.

[P and I are lovers. Pi shall be a brainy child.] (Martin Mugochi,
mathematics lecturer, University of Zimbabwe)

Dutch: Eva, o lief, o zoete hartedief uw blauwe oogen zyn
wreed bedrogen.

[Eve, oh love, oh sweet darling your blue eyes are cruelly
deceived.] (This song was being sung in the sixties, and its inventor
has slunk into obscurity.)
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English: How I wish I could enumerate pi easily, since all these
horrible mnemonics prevent recalling any of pi's sequence more simply.

How I want a drink, alcoholic of course, after the heavy chapters
involving quantum mechanics. One is, yes, adequate even enough to
induce some fun and pleasure for an instant, miserably brief.

French:
Que j'aime a faire apprendre
Un nombre utile aux sages!
Glorieux Archimède, artiste ingénieux,
Toi, de qui Syracuse loue encore le mérite!
[I really like teaching
a number that is useful to wise men!
Glorious Archimedes, ingenious artist,
You, of whom Syracuse still honors the merit!I

Que j'aime a faire apprendre un nombre utile aux sages!
Immortel Archimède, artiste ingénieux
Qui de ton jugement peut priser la valeur?
Pour moi ton problème eut de pareils avantages.
[I really like teaching a number that is useful to wise men!
Glorious Archimedes, ingenious artist,
Who can challenge your judgment?
For me, your problem had the same advantages.I (Published in

1879 in Nouvelle Correspondence Mathematique [Brusselsl 5, no.
5, p. 449.)

German:
Wie o! dies it
macht ernstlich so vielen viele MUh!
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Lernt immerhin, Junglinge, leichte Verselein,
Wie so zum Beispiel dies dürfte zu merken sein!
[How oh this it
gives so many people so much trouble!
Learn after all, young fellows, easy little verses,
how such, for example, this ought to be memorized!I

Dir, o Held, o alter Philosoph, du Riesen-Genie!
Wie viele Tausende bewundern Geister,
Himmlisch wie du und göttlich!
Noch reiner in Aeonen
Wird das uns strahlen
Wie im lichten Morgenrot!
[You, oh hero, oh old philosopher, you great genius!
How many thousands admire spirits,
Heavenly as you and godly,
Still more pure in Aeonon
Will beem on us
As in a light dawn.I

Greek:
o o MEyXç

To icuicXou

Hapl7yayEv apt 61,iov

icat ov 0Ev ovöE7row oAov
ea

[The great God who always works with geometry,
in order to determine the ratio of the circumference of a circle

to its diameter,
created an infinite number,
that will never be determined in its entirety by mere mortals.]
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Italian:
Che n'ebbe d'utile Archimede da ustori vetri sua somma scoperta?
[What advantage did Archimedes' discovery of the burning

mirror have?I (Isidoro Ferrante)

Polish:
Kto v mgle i slote
vagarovac ma ochote,
chyba ten ktory
ogniscie zakochany,
odziany vytwornie,
gna do nog bogdanki
pasc kornie.
[Who likes to skip school on a rainy and misty day, perhaps the

one who madly in love, smartly dressed, runs to fall humbly at the
feet of his loved one.]

Portuguese: Sou o medo e temor constante do menino vadio.
[I am the constant fear and terror of lazy boys.]

Romanian: Asa e bine a scrie renumitul si utilul numar.
[That's the way to write the famous and useful number.I

Sindebele (official language of Zimbabwe): Nxa u fika e khaya
uzojabula na y'nkosi ujesu qobo.

[When you get to heaven, you will rejoice with the Lord Jesus].
(Note: again, the last digit represented here is due to rounding off—
it should be 3. Dr. Precious Sibanda, University of Zimbabwe,
mathematics lecturer)
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Spanish: So! y Luna y Cielo proclaman a! Divino Autor del
Cosmo.

[Sun and Moon and Skies proclaim the divine author of the

Universe.I

Soy it lema y razón ingeniosa
De hombre sabio que serie preciosa
Valorando enunció magistral
Con mi ley singular bien medido
El grande orbe por fin reducido
Fue al sistema ordinario cabal.
[I am pi motto and ingenious reason
of wise man that beautiful series
valuing I enunciate magisterial
with my singular law measured well
the big world finally limited
it went to the ordinary complete system.]
(Columbian poet R. Nieto Paris, according to V. E. Caro, Los

Numeros [Bogota: Editorial Minerva, 19371, p. 159.)

Swedish:

Ack, o fasa, it numer fcerringas

ty skolan later var adept itvingas
räknelära medelst räknedosa
och sa ges tilltron till tabell en dyster kosa.
Nej, lât istället dem nu tokpoem bibringas!
[Oh no, Pi is nowadays belittled

for the school makes each student learn
arithmetic with the help of calculators
and thus the tables have a sad future.
No, let us instead read silly poems!i (Frank Wikström)
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For those of you who wish to create a it mnemonic, we offer
(for convenience) the value of it to enough places to satisfy most.
Remember, there is a limit to how many words one can memorize,
even if they produce interesting content. You might be interested to
know that the world record holder for the greatest number of digits
of it memorized is Hiroyuki Goto, who took over nine hours to
recite more than forty-two thousand digits of it.2

it = 3.14159 26535 89793 23846 26433 83279 50288 4197! 69399 37510 58209

2 "Japanese Student Recites Pi to 42,194 Decimal Places" Seattle Times, February 26. 1995

74944 59230 78164 06286 20899 86280 34825 34211 70679 82148 08651

32823 06647 09384 46095 50582 23172 53594 08128 48111 74502 84102

70193 85211 05559 64462 29489 54930 38196 44288 10975 66593 34461

28475 64823 37867 83165 27120 19091 45648 56692 34603 48610 45432

66482 13393 60726 02491 41273 72458 70066 06315 58817 48815 20920

96282 92540 91715 36436 78925 90360 01133 05305 48820 46652 13841

46951 94151 16094 33057 27036 57595 91953 09218 61173 81932 61179

31051 18548 07446 23799 62749 56735 18857 52724 89122 79381 83011

94912 98336 73362 44065 66430 86021 39494 63952 24737 19070 21798

60943 70277 05392 17176 29317 67523 84674 81846 76694 05132 00056

81271 45263 56082 77857 71342 75778 96091 73637 17872 14684 40901

22495 34301 46549 58537 10507 92279 68925 89235 42019 95611 21290

21960 86403 44181 59813 62977 47713 09960 51870 72113 49999 99837

29780 49951 05973 17328 16096 31859 50244 59455 34690 83026 42522

30825 33446 85035 26193 11881 71010 00313 78387 52886 58753 32083

81420 61717 76691 47303 59825 34904 28755 46873 11595 62863 88235

37875 93751 95778 18577 80532 17122 68066 13001 92787 66111 95909

21642 01989
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More Fascination with the Digits of it

Then there are those who are fixated on the frequency of the digits of
the decimal expansion of it. That is, do the digits come up with equal
frequency throughout the many decimal places of it? To determine this,

we need to look at a frequency distribution—a table that summarizes
the frequency that each of the digits appears within certain intervals.
For the first one hundred decimal places of it, do the digits appear with

equal frequency? If not, then almost equal frequency? To expect equal

frequency within the first one hundred digits would be a bit unreason-
able. When we inspect these digits, we discover how far off the distri-

bution is from this exactly equal frequency. There are statistical tests to

determine if the slight bit that they may be off for equality is due to
chance. If the disparity is due to chance, then we say that the distribu-

tion is statistically significantly the same as an equal distribution. This,

you will find, is the case in the distribution of the digits yielding the
decimal places for the value of it. The following distribution of decimal

digits d is found for the first digits of it —3, that is, we are concerned

with only the decimal part of it.3 It shows no statistically significant
departure from a uniform distribution. Dr. Yasumasa Kanada provides

the distribution of the first 1.24 trillion places, the world record for the
value of it found at the end of 2002.

The number of times the digits appear within the first 10' places of it
ltolO2 ItolO? ItolOX

8 91 968 9999 99959 999440 9999922 99993942 999967995 10000104750 99999485134

1 8 116 1026 10117 99758 10002475 99997334 000037790 9999937631 99999945664

2 12 01 1021 9908 00026 10001092 100002410 1000017271 10000026432 100000480057

3 II 102 974 0025 100229 999964 9998442 99986911 9999912396 99999787805

4 10 1012 9971 00210 1001091 10003863 100011958 999937688 0000032702 100000357857

5 8 97 1Q46 10026 100159 1000466 9993478 99998885 1000007928 9999963661 99999671008

6 9 94 1021 0029 99548 999337 9999417 100010187 999985711 9999824088 99999807503

7 8 95 970 10025 99800 000207 9999610 99996061 1000041330 0000084530 99999818723

8 12 101 948 9978 99985 999814 10002180 100001839 999991772 10000157175 100000791469

9 14 106 1014 9902 100106 1000040 9999521 00000273 1000016012 9999956635 99999854780

3. Y. Kanada, "Sample Digits for Decimal Digits of Pi," January 18, 2003, http://www.super-
computing org/pi-decimal_current.html
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Another, and more detailed, distribution is provide by Dr.
Kanada. Here you can see that as the number of digits considered
increases, the digits come closer to an equal frequency for all digits.
In the first one hundred places, there are many more 9s (fourteen)
than there are Os, is, 5s, or 7s. Among the first two hundred places,
there is less than half the number of 7s as 8s. And so it goes until
we get to a larger number of decimal places.
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Dr. Kanada also provides us with some entertainment within his
record-breaking value of it. For example, he spotted the repetition of
digits—twelve to be exact—at certain positions of the 1.24 trillion
places. Here is a list of these repetitions and the decimal places at
which they begin:

777777777777: from 368,299,898,266th decimal place of it
999999999999: from 897,831,316,556th decimal place of it
111111111111: from 1,041,032,609,98lthdecimalplaceofit

888888888888: from 1,141,385,905,180th decimal place of it

666666666666: from 1,221,587,715,177th decimal place of it

We also find the sequence of the natural numbers (with zeros at
both ends of the sequence) at various places among the first 1.24 tril-
lion places. Here they are along with the place at which they begin:

01234567890 : from 53,217,681,704th decimal place of it
01234567890 : from 148,425,641,592th decimal place of it
01234567890 : from 461,766,198,O4lth decimal place of it

01234567890 : from 542,229,022,495th decimal place of it
01234567890 from 674,836,914,243th decimal place of it
01234567890 : from 73 1,903,047,549th decimal place of it
01234567890 : from 751,931,754,993th decimal place of it

01234567890 : from 884,326,441,338th decimal place of it

01234567890 : from 1,073,216,766,668th decimal place of it

They can also be found in reverse order:

09876543210 : from 42,321,758,803th decimal place of it
09876543210 : from 57,402,068,394th decimal place of it
09876543210 : from 83,358,197,954th decimal place of it
09876543210 : from 264,556,921,332th decimal place of it
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09876543210

09876543210

09876543210

09876543210

09876543210

09876543210

09876543210

09876543210

09876543210

09876543210

09876543210

from 437,898,859,384th decimal place of it
from 454,479,252,941 th decimal place of it
from 614,717,584,937th decimal place of it
from 704,023,668,380th decimal place of it
from 718,507,1 92,392th decimal place of it
from 790,092,685,538th decimal place of it
from 818,935,607,4911th decimal place of it
from 907,466,125,920th decimal place of it
from 963,868,617,364th decimal place of it
from 965,172,356,422th decimal place of it
from 1 ,097,578,063,492th decimal place of it

These are just a few of the "entertaining" aspects of the decimal
value of it. Actually, since the decimal extension will go on indefi-
nitely (even though we now have it only to 1.24 trillion places), one
should be able to find any combination of numbers among this
sequence of digits. For example, the birthday of the United States
(7-4-1776), that is, 741776, appears beginning with the 21,134th
decimal place of it. The authors' respective birthdays were found
among the first 100 million decimal places of it as follows:

October 18, 1942, written as 10181942, was found beginning at
the 1,223rd place of it, and

December 4, 1946, written as 12041946, was found beginning
at the 21,853,937th place of it.

You can have fun trying to locate other strings of numbers. The
easiest way to do this is to search the Internet for a Web site that
does this for you. There are many such available. All you need to
do is type the string of numerals you seek to find, and the search
engine will find the location of these within a few seconds.
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If you take the first string of numerals—3 14159—to see when
it next appears, the search engines will likely tell you that it reap-
pears at the 176,451St place and then reappears another seven times
in the first 10 million places of it. So now the rest is for your recre-
ation. Search for your personal string of numbers on any of these
search engines. You might begin with your birth date. Remember,
if you minimize the number of digits in your birth date, you will
have a greater chance of finding it among the known digits of it. So

you are better off when searching for April 18, 1944, by searching
for 41844, than if you search for 04181944. Some of you might
have luck with the longer version as well.

An Optical IlLusion

it enthusiasts also focus on the purely geometric stage. Without it
they wouldn't be able to discern the following optical illusion,
namely, that both inner circles are the same size.

09000
Fig. 4-1
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A it Song

As a parting note on the it enthusiasts, we offer the following: a it
song! This song, adapted from Don McLean's "American Pie" by
Lawrence (Larry) M. Lesser from Armstrong Atlantic State Univer-
sity, gives historical highlights of the number it.

Visit http://www.real.armstrong.edu/video/excerptl .html to

download a video of Larry performing this and some other math
songs. We also recommend Larry's "math and music" page at http://
www.math.armstrong.edu/faculty/lesser/Mathemusician.html

"AMERICAN it" by Lawrence Lesser (reprinted with permission)

CHORUS: Find, find the value of pi, starts 3 point 14159.
Good ol' boys gave it a try, but the decimal never dies,
The decimal never dies.

In the Hebrew Bible we do see
the circle ratio appears as three.
And the Rhind Papyrus does report four-thirds to the fourth,
& 22 sevenths Archimedes found
with polygons was a good upper bound.
The Chinese got it really keen:
three-five-five over one thirteen!
More joined the action
with arctan series and continued fractions.
In the seventeen-hundreds, my oh my,
the English coined the symbol it.
Then Lambert showed it was a lie
to look for rational it.
He started singing. . . (Repeat Chorus)
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Late eighteen-hundreds, Lindemann shared
why a circle can't be squared.
But there's no tellin' some people—
can't pop their bubble with Buffon's needle,
Like the country doctor who sought renown
from a new "truth" he thought he found.
The Indiana Senate floor
read his bill that made it four.

That bill got through the House
with a vote unanimous!
But in the end the statesmen sighed,
"It's not for us to decide."
So the bill was left to die
like the quest for rational it.
They started singing.. . (Repeat Chorus)

That doctor's it in the sky dreams
may not look so extreme
If you take a look back: math'maticians long thought that
Deductive systems could be complete
and there was one true geometry.
Now in these computer times,
we test the best machines to find
it to a trillion places
that so far lack pattern's traces.
It's great when we can truly see
math as human history—
That adds curiosity. easy as it!
Let's all try singing. . . (Repeat Chorus)



Chapter 5

m Curiosities

The number it has a tendency to pop up when you might least
expect it, as was the case with Buffon's needle, where the proba-
bility of a tossed needle landing on the lines of a ruled piece of
paper led us to a very close approximation of the value of it.

it Digit Curiosities

There are some rather surprising curiosities surrounding the value
of it. You might find them coincidental or mysterious. We will let
you judge. For example, the circle has 360 degrees, and that fact is
connected with it in a peculiar way. Look at the 360th decimal posi-
tion of it (the 3 before the decimal point is counted):

137
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3.1415926535897932384626433832795028841971693993

75105820974944592307816406286208998628034825342

11706798214808651328230664709384460955058223172

53594081284811174502841027019385211055596446229

48954930381964428810975665933446128475648233786

78316527120190914564856692346034861045432664821

33936072602491412737245870066063155881748815209
20962829254091715364367892590 360

The number 3 is at the 359th place, the number 6 at the 360th place,
and the number 0 at the 361st place. This places 360 centered at the
360th digit.

Again, considering the value of it (below) we recall that two of
the more accurate fractional approximations of it are

= 3.142857142857 142857 and

3.141592920353982300884955722124

We can see that when we locate the 7th, 22nd, 113th, and 355th
positions in the decimal value of it, they all have a "2" in that posi-
tion. Is this coincidental, or does it have some mysterious meaning?

3.141 1971693993
75105820974944592307816406286208998628034825342
11706798214808651 8223 172

53594081284811174502841027019385211055596446229

48954930381964428810975665933446128475648233786

78316527120190914564856692346034861045432664821

33936072602491412737245870066063155881748815209

2096282925409171 360
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This scheme falls apart with the next approximation of it, namely,
3.1415923873765357745121657431944, since, although the

52,163rd place is a "2," the 16,604th place is a "1," although it is pre-
ceded and succeeded by a "2." If anything, this prevents us from
making a rule about the digits of it, which would not have been true.

Probability's Use of it

It is quite curious that it is related to probability. For example, the
probability that a number chosen at random from the set of natural
numbers' has no repeated prime divisors2 is This value also rep-
resents the probability that two natural numbers selected at random
will be relatively prime.3 This is quite astonishing since it is derived
from a geometric setting.

Using it to Measure the Lengths of Rivers

Another such curious appearance of it arises when we inspect the
path of a river. Hans-Henrik StØlum, a geologist at Cambridge Uni-
versity, calculated the ratio between twice the total length of a river
and the direct distance between the source and the end of a river.4
Recognizing that the ratio may vary from river to river, he found
the average ratio to be a bit greater than 3. It may be about 3.14,
which we recognize as an approximation for it.

Rivers have a tendency to wind back and forth. This so-called
meandering of a river is particularly interesting. The term "mean-
dering" came from the river Maeander, which is today called Buyuk

I The natural numbers are simply our counting numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, II, 12,
2. That means in the set of prime divisors, no prime number will appear more than once
3 Two numbers are relatively prime when they do not have a common divisor, other than I
4 H -H StØlum, "River Meandenng as a Self-Organizing Process," Science 271(1996) 1710—13
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Menderes (in western Turkey), and it flows in the Aegean Sea at the
ancient Milet. This river shows particularly strong meanders.

Albert Einstein was the first to point out that rivers have a ten-
dency toward a ioopy path, that is, a slight bend will lead to faster
currents on the outside shores, and the river will begin to erode and
create a curved path. The sharper the bend, the more strongly the
water flows to the outside, and in the consequence the erosion is in
turn the faster.

The meanders get increasingly more circular, and the river turns
round and returns. It then runs straight ahead again, and the
meander becomes a bleak branch. Between the two reverse
processes a balance adapts.

Fig. 5-1

Fig. 5-2
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Fig. 5-3

Let us take a look at a fictitious river and superimpose semicir-
des over the curves. We then have a sum of semicircular arcs that
will be compared to a single semicircular arc with a diameter equal
to the full distance the river will have traveled (as the crow flies).

/ = length of the river from the source A to the mouth B

AB = (straight) distance between the source A and the mouth B

M1 = midpoint of the diameter of the semicircle5 with radius r1

a = approximation of the river's length (sum of the
semicircles arcs):

a—itr1+itr2+itr3+itr4+itr5+itr6—it(r1+r2+r3+r4+r5+r6)

2a = 2it(r1 + r2 + r3 + r4 + r5 + r,6) = it .AB, which means

it a 1 2a 21
= it =

2 AB AB AB AB

Rivers that run with a gradual drop in elevation, as can be found in
Brazil or in the Siberian tundra, deliver the best approximation for
it. From a peculiar application of it, we will now focus our attention
on the unusual ways we can express approximations of it.

5. This means that the semicircle with diameter midpoint M has a radius length r.
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Unexpected it Coincidences

The value of it comes up in the oddest places. In some cases it
"almost appears." Mathematicians for centuries in their quest for
establishing the value for it have "collected" these close approxi-
mations for it. We offer a small list of some of these very close
approximations to it, for example, 3.162278 is surprisingly
close to it. We can continue to list more of these curiously close
approximations to it. In some cases, such as with
3.141380652391, they probably came up by chance and were
immediately recognized by the mathematics community (and then,
of course, treasured). In other cases, the finding can be considered
to border on ingenious—or just lucky? You decide.

Here are a few other "estimates" of it. After inspecting the fol-
lowing list, perhaps you can devise another such approximation of it.

+ 3.14626436994

333 6

= 3.141509433962264
106

(1.1) x (1.2) x (1.4) x (1.7) = 3.1416

1.09999901 x 1.19999911 x 1.39999931 x 1.69999961

_

3.141592573

—
3.1415926535897943

3,533)

473
— 1 3.141592593*

6 The bar above the digits indicates that those digits repeat in this order indefinitely.
thur equations marked with an asertisk are from Dario Castellanos, "The Ubiquitous

Mw/u'maticv Magazine 61 no 2 (April 1988)
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I

_

1 97+ i 3.141592652582646125206037179644
22)

p77, 729

254 ,)
3.141592654 1

31+ 3 14159265363*
I

— _93 _33
3.1415926535881*

[ 100—
+ + + 372

3.141592653589780*

5 \15

3.14182968 18892
16

p296
I I 3.14159704543

167)
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I

2+ /i + I 3.141592920
\,I

3.14159265380

= 3.141655614...

= 3.141591...

= 3.14159265357...

=

3.14159265358979323846264338329... [R. Mohwaldl

= 3.141592652... [Ramanujan]

= 3.141586440...
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/2,143
= 3.141592652...

22

25
= 3.1415926534...

3,983

=3.1413 806...

= 3.141603591...

= 3.141592624...

145

By the way, just for fun, look at this: = 1.77245385 1... and

= 1.772435897, which implies that another good approxima-

tion would be = 3.14152901....
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In mathematics we are always looking for connections between
concepts that on the surface have nothing to do with each other. For
example, a connection between it and the golden ratio,7 (p, is not easy

to find. Yet, Clifford A. Pickover in his book The Loom of God.
Mathematical Tapestries at the Edge of Time has almost made the
connection. He makes the "almost connection" with the following:
(p = it. But this is, again, only an approximation of it, since =

3.1416407864998738178..., while it = 3.1415926535897932384....
So you make the comparison. Satisfied with the connection?

Although not a connection (in the truest sense of the word),
another famous mathematical value is the base, e, of the natural
logarithm, which equals approximately 2.7 18281828. The value of

is very close in value to ite. Using a calculator, we can easily cal-
culate each value just to see how close in value these actually are.

23.1407. . . and ite 22.4592. . . Quite astonishing!8

Continued Fractions and it

The value of it can also be expressed as a continued fraction. Before
we show this, we will briefly review what a continued fraction is. A
continued fraction is a fraction in which the denominator has a mixed

number (a whole number and a proper fraction) in it. We can take an
improper fraction such as and express it as a mixed number:

=

7. The Golden Ratio is the ratio of two line segments, a and b (where a < b), such that

The ratio .6180339887498948482045868343656, while the reciprocal
1.6180339887498948482045868343656 Notice the relationship between the decimals It sug-

gests that
8. For the mathematic enthusiast, we provide several proofs of this fact in appendix C. Name'y,

that lte
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Without changing the value, we could then write this as

6 1

1 + - = 1+—
7 7

6

which in turn could be written as (again, without any value change)

1 +
1+—

6

This is a continued fraction. We would have continued this process,
but when we reach a unit fraction, we are essentially finished. Just so
that you can get a better grasp of this, we will create another continued

fraction. We will convert to a continued fraction form:

12 5 1 1 1 1

=1+ =1+
7 7 7 2 1 1

— 1+— 1+— 1+
2+!

2 2

If we break up a continued fraction into its component parts
(called convergents),9 we get closer and closer to the actual value
of the original fraction.

First convergent of = 1

Second convergent of = 1 + = 2

Third convergent of = 1 + 7111 = 1+ = 1 =

9. This is done by considering the value of each portion of the continued fraction up to each
plus sign, successive'y.



148 Ic

Fourth convergent of = 1 + i + =

The above examples are all finite continued fractions. They
result in rational numbers (those that can be expressed as simple
fractions—albeit improper fractions). It would then follow that an
irrational number would result in an infinite continued fraction.
That is exactly the case. A simple example of an infinite continued
fraction is that of

+ 12+
1

2+
1

2+
1

2+
1

2+
12+—

2+

We have a short way to write a long (in this case infinitely long)
continued fraction: [1, 2, 2, 2, 2, 2, 2, 2,...], or when there are these
endless repetitions, we can even write it in shorter form as [i,
where the bar over the 2 indicates that the 2 repeats endlessly.

The German mathematician Johann Heinrich Lambert
(1728—1777) was the first to rigorously prove that it was irrational.

His method of proof was to show that if n is rational (and not zero),

then the tangent of n cannot be rational. He said that since tan =

1 (a rational number), then or it cannot be rational)° In 1770

Lambert produced a continued fraction for it.

10. Lambert's proof was strengthened by Adrien-Marie Legendre (1752—1833) in his 1794
book, Elements de geometrie
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1+
14+

2+
1+

1+
2+

2+
2+

2+
1+

84 +
2+

This written in short form is [3,7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1,

14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2,.. .1

The convergents of this continued fraction are , , ,

103,993 104,348

33,102 ' 33,215 '"
You may remember seeing the first convergents before. They

were historical approximations:
3 was the approximation mentioned in the Bible (I Kings 7:23

and 2 Chronicles 4:2).
was the upper bound given by Archimedes in the third cen-
tury BCE.
was the lower bound for it found by Adriaen Anthoniszoon.

355 ,
was found about 480 by Tsu Ch ung Chi and others.

The first four may appear familiar to you since we encountered
these approximations earlier. With each successive convergent, we
get closer to the value of it. Here are the decimal values of these
convergents. Notice how they approach it gradually, each succes-
sive one gets ever closer to it.
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Convergents of it Decimal equivalents

3.0

3.142857142857

3.141509433962264

3.1415929203539823008849557522124

103,993
3.1415926530119026040722614947737

3.14159265392142104470871594

For the motivated reader, we provide two nonsimple continued
fractions (with numerators other than 1) whose successive conver-
gents will also approach the value of it:11

4 12

—=1+
Ic

32

2+ 52

2+ 72

2+ 92

2+

2+
2+.•.

it 1
—=1+
2 1.2

1+
2.3

1+
3.4

1+
1+

1+•••

11. In 1869, James Joseph Sylvester (1814—1897) discovered the second continued fraction,
shown here. He is also known for his role in founding the American Journal of Mathematics.
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In peculiar ways we can make it relate to other aspects of math-
ematics. For example, the harmonic series

1 1 1 1 1 1 1 1 11+—+—+—+—+—+—+—+—+—+...
2 3 4 5 6 7 8 9 10

in which the addends merely are a sequence formed by taking the
reciprocals of the natural numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

Can this also relate to it? This time, however, we must make a
slight modification. We will take the squares of the terms of the har-
monic series to get That is, = +....

Some other series'2 that relate to it are provided below:

1 1 1 1 1—=1-—+———+—-—+...
12 22 32 42 52 6244444444

1 3 5 7 9 11 13 15

The above expression of it was developed by Leonhard Euler, who
also came up with another interesting expression for obtaining the
value of it:

=11_iY1_iY1
iv 100)

which, by using some elementary algebra,'3 can be written in a sim-
pler form as'4

2 (1.3')(3.5')(5.7')(7.9')( 9.11
iv

2. A series is the sum of the terms of a sequence.
I . n2—l (n—I)(n+I)13. The general term can be written as 1 — which then equals

——-=
14. This was first developed independently by John Wallis.
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While discussing expressions that can represent it, we should
note the formula that Leonhard Euler developed:'5

.[i 1 (1 1 1

ir=hml —+——+4n1 + ++
6n2 n2+22 n2+n2

It is interesting to see this formula applied to successive values
of n. You will notice that after n = 10, the approach to it gets
markedly slower.

Values of n Values of it as determined by Euler's formula

1 3.16666666666666

2 3.14166666666666

3 3.14159544159544

4 3.141593137254902

5 3.141592780477657

10 3.141592655573826

20 3.141592653620795

30 3.141592653592515

50 3.141592653589920

100 3.141592653589795

112 3.141592653589793

We shall end this chapter with some purely recreational illustra-

tions. Dario Castellanos, in his comprehensive article "The Ubiqui-

tous it,"6 shows how (somewhat circuitously) the number 666 is

15. Discovered in a correspondence to Christian Goldbach, "The Ubiquitous it," p. 73.

16. Ibid.
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related to it. Be patient as you follow along. First, a word about the

number 666. It is the number of the beast in the book of Revelations

in the Bible: "Here is wisdom. Let him that hath understanding
count the number of the beast; for it is the number of a man, and his

number is six hundred, three score and six." It is also the thirty-
sixth triangular number It is also curious that 666 rep-

resented in Roman numerals is DCLXVI, which uses all the sym-

bols less than M exactly once.
The number 666 is equal to the sum of the squares of the first

seven prime numbers:

666=22+32+52+72+112+132+ 172

Some other peculiarities of 666 follow.
The exponents reflect the number 666 and the bases are the first

three natural numbers.

666= 16_26+36

Now look at how the 666 manifests itself:

666 = 6 + 6 + 6 + + +

or 666 = (6+ 6+ 6)2 + (6+ 6+ 6)2 + 6 + 6 + 6

Notice the pattern here:

Having now established the unusualness of the number 666, we
will come back to it shortly. Consider the first nine digits of the
value of it in groups of three: 314 159 265. The second two groups
of three, together with 212, form a Pythagorean triple (159, 212,
265), which means that 1592 + 2122 = 2652.
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Now here is the "stretch." This newly introduced number, 212,
together with 666, forms a quotient that gives a nice approximation

666of it. That is, 3.14150943396226.

A further connection with the relationship of 666 and it: the sum
of the first 144 (= [6 + 61 • [6 + 61) digits of it is 666.

Another recreational application of it Castellanos shows involves a

magic square.'7 Consider the conventional 5 x 5 magic square:

17 24 1 8 15

23 5 7 14 1

4 6 13 20 22

10 12 19 21 3

11 18 25 2 9

We now replace each number with that number digit of the it
decimal value. That is, we replace 17 with 2, since 2 is the seven-
teenth digit in the value of it, and so on.

Sum of the rows

Sums of the columns

2 4 3

6 5 2

1 9 9
3 8 8

5 3 3

17 29 25

6 9 24

7 3 23
4 2 25
6 4 29
1 5 17

24 23

Notice how the sums of the columns are the same as the sums of
the rows!

You can call the following coincidence or consider it a strange
mystery, but look at this next relationship.

17. A magic square is a square arrangement of numbers where the sum of each row, column,
and diagonal is the same.
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Let's look at the first three decimal places of it: 141. The
sum of these digits is 6, the first perfect number,'8 and the third
triangular number.'9

Now look at the first seven decimal places of it: 1415926. Their
sum is 28, which is the second perfect number and the seventh tri-
angular number. Astonishing symmetry!

Mike Keith's World of Words & Numbers (http://users.aol.com/
s6sj7gt/mikehome.htm#toc) provides some unusual numerical recre-
ations. One is an unusual pattern of the digits of it. First, arranging
the digits of the decimal value of it as hexagonal numbers,2° we get
the last number (the first hexagonal number) as six nines.

Notice how the last row of digits, representing the first polyg-
onal number, 1, consists of all nines. That is, we ended up at these
six nines after the 768th digit.

18. A perfect number is one where the sum of its proper factors is equal to the number itself.
For example, 6 is a perfect number because the sum of its proper factors, 1 + 2 + 3, equals 6.

19. Triangular numbers are those that represent an equilateral array of points:

20. Hexagonal numbers are those that represent a hexagonal array of points:

Hence, 1, 7, 19, etc. are hexagonal numbers.
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Realizing that the six nines will appear after the 768th digit, let
us now repeat this for 12 X 8 rectangles:

314159265358 979323846264 338327950288
628620899862 803482534211 706798214808
940812848111 745028410270 193852110555
344612847564 823378678316 527120190914
726024914127 372458700660 631558817488
001133053054 882046652138 414695194151
193261179310 511854807446 237996274956
367336244065 664308602139 494639522473

675238 467481 846766
526356 082778 577134
872146 844090 122495
079227 968925 892354

419716939937 510582097494
651328230664 709384460955
964462294895 493038196442
564856692346 034861045432
152092096282 925409171536
160943305727 036575959195
735188575272 489122793818
719070217986 094370277053

940513 200056 812714
275778 960917 363717
343014 654958 537105
201995 611212 902196

086 403 441 815 98]. 362

977 477 130 996 051 870

721 134999 999
There are lots of properties that can be established for the

number 768. For example, 768 = 3 x 256 = 3 x 44 = 12 x 43 =

(6)(1 + 1 + 2 + 4 + 8 + 16 + 32 + 64), as well as others that you can

find. These properties allow us to neatly end up with the row of
nines in the above geometric arrangements.

Searching the Internet or reading books on number theory and
recreational mathematics will provide you with a boundless supply
of it peculiarities to savor.

459230781640
058223172535
881097566593
664821339360
436789259036
309218611738
301194912983
921717629317



Chapter 6

Applications of ic

We will now explore the various applications of it in a variety of
ways. This will involve some unusual properties of the circle,
which determines it. We will explore the areas of some rather
strange-looking regions that are based on the circle and find the
lengths of circular arcs that are a bit "off the beaten path." Yet we
will begin with the introduction to a geometric shape that shares
many properties with the circle but isn't one.

it When You Least Expect It

It is well known that it is related to the circle—as its ratio of cir-
cumference to diameter. We begin by inspecting another geometric
figure, in which the ratio of its perimeter to its "distance across" is

157
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also it. As with the circle, which has a constant breadth, namely, its
diameter, this figure also has a constant breadth, although that prop-
erty is not as obvious as with the circle. The figure of which we
speak is very simply constructed. We will introduce it through its
construction. We begin by constructing an equilateral triangle and
then drawing three congruent circles, using each vertex of the tri-
angle as a center and each radius equal to the side of the triangle.

The shaded figure is the subject of this chapter. This shape (seen
isolated in fig. 6-2) is called a Reuleaux triangle, named after the
German engineer Franz Reuleaux (1829—1905), who taught at the
Royal Technical University of Berlin. One might wonder how
Franz Reuleaux ever thought of this triangle. It is said that he was
in search of a button that was not round but still could fit through a
button hole equally well from any orientation. His "triangle" solved
the problem, as we will see in the following pages.

Fig. 6-1
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This Reuleaux triangle has many unusual properties. It com-
pares nicely to the circle of similar breadth.' What do we mean by
the breadth of the Reuleaux triangle? We refer to the distance
between two parallel lines tangent to the curve (see fig. 6-3) as the
breadth of the curve. Now look carefully at the Reuleaux triangle
and notice that no matter where we place these parallel tangents,
they will always be the same distance apart—namely, the radius of
the arcs comprising the triangle. (See fig. 6-3.)

L In the case of a circle, the breadth is the diameter, while for the Reuleaux triangle, it is the

distance across—from a mangle vertex to the opposite arc

Fig. 6-2
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Fig. 6-3

Another geometric figure having a constant breadth is a circle.
As you can plainly see in figure 6-4, the "breadth" of a circle is its
diameter. The same property holds true for the circle as it did for
the Reuleaux triangle: wherever we place the parallel tangents, they
will always be the diameter-distance apart.

Fig. 6-4

A

////
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Before we inspect some of the fascinating properties of this
Reuleaux triangle, such as the fact that it is analogous to the circle
in its ratio of perimeter to breadth also equaling it, we will discuss
a "practical application" of the Reuleaux triangle.

You know that if you were to try to turn a circular screw with a
normal wrench, you would have no success. The wrench would slip
and not allow a proper grip on the circular head of the screw. The
same would hold true for a Reuleaux triangular head. It, too, would
slip since it is a curve of constant breadth, just like the circle is.

So here is a practical application of this situation. During the
summer months, kids in a city like to "illegally" turn on the fire
hydrants to cool off on very hot days. Since the valve of the hydrant
is usually a hexagonal-shaped nut, they simply get a wrench to
open the hydrant. If that nut were the shape of a Reuleaux triangle,
then the wrench would slip along the curve just as it would along a
circle. However, with the Reuleaux triangle nut, unlike a circle-
shaped nut, we could have a special wrench with a congruent
Reuleaux triangle shape that would fit about the nut and not slip.
This would not be possible with a circular nut. Thus, the fire depart-
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ment would be equipped with a special Reuleaux wrench to open
the hydrant in cases of fire, yet the Reuleaux triangle could protect
against playful water opening and avoid water being wasted in this
manner. Just as a matter of curiosity, the fire hydrants in New York
City have pentagonal nuts, which also do not have parallel opposite
sides and cannot be turned by a normal wrench.

The Reuleaux triangle is said to be, like the circle, a closed
curve of constant breadth. That is to say that when one measures the
figure with calipers,2 it will have the same measure no matter where
the parallel jaws of the calipers are placed. This is true for a circle
and also for the Reuleaux triangle.

As we showed before, the Reuleaux triangle is formed by
drawing circles, each centered at a different vertex of a given equi-
lateral triangle and each having a radius equal in length to the side
of the equilateral triangle (fig. 6-6).

2. An instrument having a fixed and a movable arm on a graduated stock, used for measuring

the diameters of logs and similar objects.

Fig. 6-6
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Here then is the constructed Reuleaux triangle (fig. 6-7).

Fig. 6-8

Fig. 6-7
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Surprisingly, the circumference of the Reuleaux triangle of
breadth r has exactly the same perimeter (i.e., the circumference) as
that of a circle with the diameter equal to the breadth of the
Reuleaux triangle. We shall verify this relationship between the
circle and the Reuleaux triangle.

In figure 6-8 we notice that one "side" of the Reuleaux triangle
is one-sixth of the circumcircle of a regular hexagon, so three times
this side length give us the perimeter. Therefore, the Reuleaux tri-
angle (of breadth r) has a perimeter that equals

= icr

The circle with a diameter of length r has a circumference that
is itr, which is the same as the perimeter of the Reuleaux triangle.

The comparison of the areas of these two figures is quite
another thing. The areas are not equal. Let's compare the areas.

We can get the area of the Reuleaux triangle in a clever way, by
adding the three circle sectors3 that overlap the equilateral triangle
and then deducting the pieces that overlap, so that this region is
actually only counted once and not three times. (This will be a very
useful technique to remember for use later in this chapter.)

The total area of the three overlapping circle sectors

=

The area of the equilateral triangle4

4

3. A circle sector, which looks like a piece of pie, is a region bounded by two radii of a circk
and the circle's arc joining them.

4. This is an important formula to remember and will be used rather frequently It is obtained
by using the Pythagorean theorem to find the altitude, and then simply applying the traditional for-
mula for the area of a tnangle. A = bh.
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The area of the Reuleaux triangle5 is

2[rfj
= - )

The area of a circle with diameter of length r is

7 \2 2icr
'ri—I

4

Comparing the areas of these two figures of equal breadth indi-
cates that the area of the Reuleaux triangle is less than the area of
the circle. This is consistent with our understanding of regular poiy-
gons, where the circle has the largest area for a given diameter.

The Austrian mathematician Wilhelm Blaschke (1885—1962)
proved that given any number of such figures of equal breadth, the
Reuleaux triangle will always possess the smallest area, and the
circle will have the greatest area.

Let's now go back and see why the Reuleaux triangle has the
same ratio of perimeter to breadth as the circle—namely, it. The
perimeter is comprised of three arcs (see fig. 6-8), each one-sixth of
a circle of radius, say, r. Therefore the perimeter is

= icr

The breadth is r. So the ratio of perimeter to breadth is = iv,

which is exactly what we know about a circle—that the ratio of its
perimeter (i.e., circumference) to its breadth (diameter) is equal to it.

We know a wheel rolls on a flat surface quite smoothly. If the
Reuleaux triangle is "equivalent" to the circle, it, too, should be
able to roll on a flat surface. Well, it can, but it wouldn't be a
smooth roll because of the "pointed" corners. Yet if furniture

5. We are subtracting two overlapping triangle areas from the three overlapping sectors.
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movers would use a roller in the shape of a Reuleaux triangle
instead of the usual round, circle-shaped roller, the furniture would
not "bounce" the object being moved, but it would roll somewhat
irregularly. Notice that the center point (or centroid) of the rolling
Reuleaux triangle will not stay at a constant parallel path to the sur-
face being rolled on, as is the case for a circle. The end view of
these rolling Reuleaux triangles might look like the following.

We can make an adjustment to the Reuleaux triangle to give it
rounded corners, and without destroying its properties.

If we extend the sides (length s) of the equilateral triangle that
was used to generate the Reuleaux triangle by an equal amount
(say, a) through each vertex, and then draw six circular arcs alter-
nately with the vertices of the triangle as centers (see fig. 6-10), and
radius a, the result is a modified Reuleaux triangle with "rounded
corners" to allow a smoother roll.

We now need to see that this modified Reuleaux triangle is of
constant breadth and that the ratio of its perimeter to its breadth is 7C.

Fig. 6-9a

Fig. 6-9b
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The sum of the lengths of the three smaller "corner arcs" is

3

The sum of the lengths of the three larger "side arcs" is

3[!27t(s + a)]

The sum of the six arcs (i.e., the perimeter) is iv (s + 2a) + ira =

iv (s + a). The breadth is (s + 2a), so the ratio of perimeter to breadth
is it. When you would least expect it, it, again, shows up. Compar-
atively speaking, a circle with diameter (s + 2a) has a circumfer-
ence of iv (s + 2a), the same as the Reuleaux triangle.

Another astonishing property of the Reuleaux triangle is that a drill

bit in the shape of a Reuleaux triangle could bore a square hole rather
than the expected round hole. Or to put this another way, the Reuleaux

triangle is always in contact with each side of a square of appropriate
size. This can be seen below (see fig. 6-11). Remember, however, that

Fig. 6-10
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this drill will not be rotating on a fixed axis; rather, the center of a
Reuleaux triangle rotating in the square almost describes a circle—
more exactly, it consists of four elliptical arcs. (The circle is the only
curve of constant breadth that has a balanced center of symmetry.)

The English engineer Harry James Watt,6 who lived in Turtle
Creek in Pennsylvania, recognized this in 1914, when he received a
US patent (no. 1241175), enabling these drills to be produced. The
production of drills that can cut square holes was begun in 1916 by
the Watt Brothers Tools Factories in Wilmerding, Pennsylvania.
Thus, the Reuleaux triangle can be rotated so that it always touches
the sides of a square, and thereby brushes over the sides of the
square and also gets very close to the corners of the square.

I
/

Fig. 6-11

6. A descendant of the famous inventor James Watt (1736—1819).

\ /
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Felix Wankel (1902—1988), a German engineer, built an internal

combustion engine for a car that was the shape of a Reuleaux tri-
angle and rotated in a chamber. It had fewer moving parts and gave
out more horsepower for its size than the usual piston engines. The
Wankel engine was first tried in 1957 and then put into production
in the 1964 Mazda. Again, the unusual properties of the Reuleaux
triangle made this type of engine possible.

The Energon, in UIm, Germany, is purported to be the biggest
passive office block in the world. It has the outer shape of a Reuleaux
triangle and is a low-energy building, heated by geothermal energy.

Fig. 6-12
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Fig. 6-13

There are lots of entertaining and useful ideas attached to this
Reuleaux triangle, which is the analogue of the circle, and hence
shares ownership of it with the circle.

it in Sports

Have your ever wondered how the start positions at a track meet are
calculated? Well, this can't be done without it. The standard track is
400 meters, and the width of each runner's lane is 1.25 meters. The
track is composed of two straight paths and two semicircular paths.

There are a number of questions that arise in the construction of
a racetrack. How long is each lane of the track? How much of a
head start, v, in meters should each successive runner have after the
runner in lane 1? What must the radius of each of the semicircular
parts be in order for lane 1 of the track to be 400 meters long?

We will consider the length of the straight parts of the track to
be a meters and the width of each lane to be b meters.
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(Note: The measurement shall be made 20 cm from the inside edge
of each successive lane.)

We begin by measuring lane 1, and then, for each successive
lane, we make the proper adjustments as shown below.7

lane 1: C1 = 2a + 2m(r + .2) = 2a + 2mr + 2m .2; v1 = 0

lane2: C2=2a+2m(r+b+.2)=2a+2mr+2mb+2m .2;

v2 = 2mb

lane3: C3=2a+2m(r+2b+.2)=2a+2mr+4mb+2m
= 4mb

lane4: C4=2a+2m(r+3b+.2)=2a+2mr+6irb+2m
= 6mb

With a = 100 m, b = 1.25 m, and C1 = 2a + 2mr + 2it .2, we get

2(a + mr + .2m) = 400; therefore, r = — = 31.63 m

7. 20 cm = .2 m

Fig. 6-14
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The handicaps have been calculated in the following way:

v2 = 2mb 7.85 m

15.71 m

Remember, none of this would have been possible without
our trusty it!

Not only does it play an ever-important role in finding areas
of circles and sections of circles, but now we must use some
interesting techniques that will result in perhaps new ways of
"looking" at some problem situations—that is, "backing into"
the solution, a somewhat indirect method. As we go along from
problem to problem, the technique will become more obvious
and, we hope, familiar.

A Spiral Formed by Semicircles

We begin by looking at the figures below (fig. 6-15). They
appear to be spirals, and can be considered so. However, they
are unusual in that they are created by successively larger semi-
circles. Using the ubiquitous it, we will be able to measure
aspects of these spirals: length and area. In figures 6-iSa and 6-
15b, the points and M0 are at a distance a from each other
and are alternately the respective centers of semicircles. is

the center of the "bottom" semicircles, and M0 is the center of
the semicircles lying above the horizontal diameter.
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With the help of our trusty it, we can find the length of the spiral
and the areas of the semi-annuli.8 We will calculate each portion sep-

arately. Semicircle c1 (Ma, a) refers to the semicircle with center
and radius length a. The table below shows the calculation for each.

8. An annulus is the region between two concentric circles. The semi-annulus is the region

betweenconcentric semicircles

Fig. 6-15a

Fig. 6-15b
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Semicircle
Arc
length

Area of the
semicircies

Area of the
semi-annuli

b1=ir•a 1 2 A1
2

1

it • (2a)2 A2=2ir • a2 =2ira2

3a) b3= 3ir • a
I

A3 = —
1

= 4ira2

c4(M0, 4a) b4= 4ir • a
1

= - it
2

(4a)2 =6ira2

5a) b5= 5it • a 1

= — it
2

(5a)2 =8ira2

c6(M0, 6a) b6= 6it • a
1

= it • = lOita2

7a) b7 = 7ir • a 1

= — it
2

(7a)2 = l2ira2

c8(M0, 8a)

(above)

c8(M0, 8a)

b8= 8ir • a

b8= 8it • a

1

A = - it
2

(8a)2

(8a)2 A9 = —

=14it•a2

15 2
= — ira

2

(below)

The length of the spiral is the sum of the b's
(1 +2+3+4+5+6+7+8+8)ma=44ma

We can test to see if we calculated the areas of the semi-annuli
correctly by adding them to get the area of the largest circle.

A1+ A2+ A3+ A4+ A5+ A6 + A7+ A8+ A9
= !ita2 + 2ma2 + 4ma2 + 6ma2 + 8ma2 + lOica2 + 12ma2 + l4ica2 +

2 2

+2+4+6+8+10+12+14+
2 2

= f,4 = ir(8a)2 = Area curIe 8

What is nice here is that with it's help we can calculate the
length and area of the spiral.
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The Unique Seven-Circles Arrangement

Try taking seven coins of the same size and placing them so that six
of them are tangent to the seventh one, as shown below. (This can
only be done with seven congruent circles.)

You will discover as we go further into this section that the reason

that this can only be done with seven congruent circles is that if you
join the radii at the points of tangency, you will form a regular
hexagon. This is analogous to drawing a circle with a pair of com-
passes and then finding out that if you mark off consecutively the
radius length along the circumference of the circle, it will bring you
back exactly to your starting point after six segments.

Consider the configuration in figure 6-17. We might want to
determine the area of the nonshaded regions between the congruent
circles. There are several ways of finding the area of the nonshaded
regions. We will offer one here.

Fig. 6-16
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i-
Fig. 6-170

Consider the equilateral triangle surrounding one of these non-
shaded regions. The area of a nonshaded region can be obtained by
finding the area of the triangle and subtracting three sectors—each
one-sixth of a circle (since it has a angle). If we let the radius of a

small circle equal r, we get one of the nonshaded regions as follows:

2 fl
Areaeq triangle

=
= r 3

(1 1rr2
Area$,wded$ecw,.s = 3 irr

) =

= =

regions = 6 — iv)] = 3r2 —

To find the area of the six-pointed figure in the center (see fig.
6-1 8a), we merely add the area of one of the small circles to the
sum of these nonshaded regions:

= irr2 + 3ir2
—

iv) = 2r2
—

iv)

Fig. 6-1 lb



Applications of it 177

Once a circle is placed around the six outside circles, there are
additional nonshaded regions. To get the total area of these non-
shaded regions inside the larger circle, we simply subtract the total
area of the seven small circles from the larger circle. (3r)2 it — 7itr2

= 2itr2. Thus, with the help of it, we were able to show that the
remaining area, when the seven circles are taken out of the larger
circle, is the equivalent of two small circles.

Fig. 6-18a

Fig. 6-18b
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A "Mushroom" Shape

The following figure consists of a quadrant (or quarter circle) and
two overlaid semicircies, whose diameters are as big as the radius
of the quarter circle.

What would you guess is the relationship between the shaded
regions marked A and B?

Fig. 6-19
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The answer may become clearer if we complete the various circles.

Since the big circle has double the radius of the little circle, its
area is four times as big.9

Area = 4 • Area small circle = 4(iri2) = ir(2r)2big circle

So the sum of the areas of the four inner circles is the same as
the area of the outer circle.

We notice that there are four overlapping regions (marked B), and
there are four regions in the larger circle that are not included in the
smaller circles. Since the B regions are used twice and the A regions
are not used at all in the sum of the area of the four smaller circles (and

there is complete symmetry), we can conclude that each of the B
regions must be equal in area to each of the A regions—recalling that

the sum of the areas of the four smaller circles equals the area of the
larger circle. This type of reasoning is very important in mathematics.

9. There is an important concept in geometry, namely, that two similar figures have areas in a

ratio that is the square of their ratio of similitude (the ratio of their corresponding sides). This idea is

used here since all circles are similar to each other

Fig. 6-20
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We can also look at this problem in another way, one that may
require a bit less abstraction, but some more work. Elegance has its price!

Consider the figure above, where perpendicular radii of length
r are drawn in the two semicircies. We can represent the various
areas as follows:

First, to find the area of region A, we will subtract from the
large quarter circle (which includes regions A, D, D, E, E, and B)
the two smaller quarter circles and the small square (this includes
regions D, D, E, E, and B).

Area
A

=

[2(iJrr2
)

+ r2]

Fig. 6-21
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To find the area of region B, we add the two small (overlapping)
quarter circles (this includes regions B, E, B, and E) and subtract
the square (including regions E, E, and B) from this sum.

Area8
)

2

2

= r2 —1

So we can clearly see that the two regions A and B have the
same area.

Over the next few pages we will be working on some unusual
shapes. They will be formed by circle arcs inside a square. The fol-
lowing figures will foreshadow the ensuing discussion. Since it is
said that a picture is equivalent to a thousand words, we will let
these figures speak for themselves.

In figure 6-22a, the darker shaded region is a quarter circle of
radius a. Therefore, to find this area we take one-quarter of the area

of the circle. Thus, the area is Ira2. To get the area of the lighter

shaded region, we merely subtract the area of the quarter circle

Fig. 6-22a Fig. 6-22b Fig. 6-22c Fig. 6-22d
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from the area of the square to get = This tech-

nique will be used throughout this exploration of the areas of the
strange regions we will be considering.

0

_____

C

\
\ a

\\

Fig. 6-23

In figure 6-23 (where ABCD is a square, and two quarter circle arcs

BD are drawn), we are asked to find the area of the shaded region (the
football shape)—comprised of two overlapping quarter circles. The
straightforward way (which most people would probably use) is to find
the area of sector ADB and subtract the area of right A ADB, resulting
in the area of the segment (half the football shape), which is then dou-
bled to get the area of the shaded region.

A more elegant method (we believe) is to add the areas of
sectors ADB and CBD to get the area equal to A1 + 2A3 + A2. If
we now subtract the area of the square from this sum, we get the
area of the shaded region.
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We will now carry out this plan:

Area sector ADB = jra2

Area sector CBD = jra2

Sum of areas of sectors ADB + CBD =

[Notice that the shaded region is used twice in the addition.]

Subtract the area of square ABCD to get

D

6

A4 A5

A2 A a

h
A1

A a M a B
2 2

Fig. 6-24

In figure 6-24, we have two quarter circles centered at vertices
A and B of square ABCD, with side length a. We seek to find the
area of region A6. The segment EM is perpendicular to AB at its
midpoint M. MEB is equilateral.

By the Pythagorean theorem, EM = so the area of MEB

=—I--—--I(a)=
2L2)

lO. This is the well-known and frequently used formula for finding the area of an equilateral tri-

angle with side length given. In this case the side length is a.
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Now to the solution of the problem: twice the area of sector
AEB minus the area of L\AEB gives the area of A1 + A2 + A3.

Let's do that now.
Since m LAEB = 60°, the area of sector AEB =

Double this is Subtracting the area of MEB gives us

'ra2

3 4

We now have the area of A1 + A2 + A3 = -

We use a similar technique; however, this time we will find twice
the area of quarter-wide sector ADB and subtract the region we just
found: A1 + A2 + A3. In other words, we again subtract the doubly
used overlap region to get the shaded region. What is then left to
complete the square is A6, which is the region whose area we
sought in the first place. The problem will then be solved.

Now for the computation:
7ra2 •

The area of quarter circle sector ADB = —h--, and double that is -a-.

We must now subtract the overlapped region, used twice:

2 3 4

And then subtract this from the area of the square to get

2
(jra2 ira2

a -I—-———-—+
2 3 4

= a2 —

—

= a2 [i — is the area of k.
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We will be needing the area of this region (A6) for the next
problem, which may be a bit challenging. However, with the work we
have already done and with the technique we have used a few times
in these earlier problems—that of subtracting the overlapped region
(used twice)—we should have no difficulty solving the problem.

B

In figure 6-25 we have our quarter circular sectors with centers at
the vertices of square ABCD and radius a, intersecting to form region
F9, whose area we seek. In the previous problem, we had just found
the area of region F3. We can get the area of the total shaded region,
F2 + F4 + F6 + F8 + F9, by subtracting the areas of the four unshaded
regions (each equal to F3) from the area of the square ABCD.

D C

a

A a
Fig. 6-25
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This is done as follows:

a2

We can also get the area of this shaded region by finding the
sum of the areas of the two overlapping "football"-shaped regions
and subtracting the area of the overlap regions F9 (which was used
twice). We found the area of this football shaped region on page
183 to be — 1).

Twice that is a2(it — 2), which is the area of the shaded region
plus the region F9 (which was used twice). So, all we need to find
the sought-after region is to subtract the shaded region, F9, from
twice the "football" region.

a2 —2) — a2 —3+

This was no mean feat. Yet you can see the role that it plays in these

rather unusual excursions into finding the areas of strange regions.

A "Dolphin" Shape

The side of the square lattice (fig. 6-26) has a unit measure of a. We
would like to find the perimeter and the area of this strange-looking
shape, which we will call a dolphin shape.
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Let's begin by inspecting the actual construction of the dolphin
shape. For that we provide you with the complete circles, a part of
which made up the dolphin shape. (See fig. 6-27.)

Fig. 6-27

a

Fig. 6.26
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The perimeter consists of two quarter circles with the radius
r1 = a and two quarter circles with the radius r2 = 2a. We get the
perimeter rather easily in the following way.

Perimeter = 2 2ita + 2 (i-) 2it(2a) = 3ita

a

The area consists of the areas of two segments with the radius
r2 = 2a, from which we subtract the areas of the two segments with
the radius r1 = a.

We can obtain the area of a segment (see fig. 6-29) by sub-
tracting the area of the isosceles right triangle from the area of its
quarter circle, that is, A reasegment = A reaquarter circle — A rea right triangle

f

4

a

Fig. 6-28
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2 r
=—irr ——

4 2

= (Jr—2).r2

4
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For the two segments S1 and with the radius r2 = 2a we get
the area

1(ir — 2).(2a)2
1

Area5 + Area5 = 2[
]

= 2 (it — 2)a2

then both segments S3 and S4 with the radius r1 = a deliver the

area to be subtracted

(ir—2).a2 1Area5 + Area5 =2[
]

= —(it—2)a2

The area of the dolphin-shaped figure is then

(Areas + Areas ) — (Area5 + Areas
)

= 2(ir — 2)a2 — — 2)a2 = — 2)a2

You might like to discover other ways in which the perimeter
and the area of this strange shape can be found.

Fig. 6-29
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The Yin and Yang

The yin-yang is an ancient symbol of Chinese philosophy. It
reflects the polar basic concepts of the Chinese philosophy, from
whose interplay and interaction all events of the universe arise.

Where does the yin-yang symbol come The is a well-
known Chinese yin-yang symbol. Its development is from the natural

phenomena of our universe.

Fig. 6-30

By observing the sky, recording the Big Dipper's positions, and
watching the shadow of the sun from an eight-foot (Chinese meas-

II. Parts of this Section are taken from the Web site http:llwww.chinesefortuneealendar.com/

yinyang.htm, which is copyright © 2003 by Allen Tsai They are used with permission.

The Big Dipper at night

Summer Solstice Q
0

Writer Solstice

8-Foot Ruler

Nodh
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urement) pole, ancient Chinese people determined the four direc-
tions. The direction of sunrise is the east, the direction of sunset is
the west, the direction of the shortest shadow is the south, and the
direction of the longest shadow is the north. At night, the direction
of the Polaris star is the north.

They noticed the seasonal changes. When the Big Dipper points
to the east, it's spring; when the Big Dipper points to the south, it's
summer; when the Big Dipper points to the west, it's fall; and when
the Big Dipper points to the north, it's winter.

When observing the cycle of the sun, the ancient Chinese
simply used a pole about eight feet long, posted at right angles to
the ground, and recorded positions of the shadow. Then they found
the length of a year is around 365.25 days. They even divided the
year's cycle into twenty-four segments, including the vernal
equinox, the autumnal equinox, the summer solstice, and the winter
solstice, using the sunrise and Big Dipper positions.

They used six concentric circles, marked the twenty-four seg-
ment points, divided the circles into twenty-four sectors, and
recorded the length of shadow every day. The shortest shadow is
found on the day of the summer solstice. The longest shadow is
found on the day of the winter solstice. After drawing lines and
dimming the yin part going from the summer solstice to the winter
solstice, the sun chart looks as it is shown below. The ecliptic angle
23° 26' 19" of the earth can be seen in the following chart.
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The ecliptic is the sun's apparent path around the earth. It is tilted
relative to the earth's equator. The value of obliquity of the ecliptic
was around 23° 26' 19" in year 2000.

Sun

0
1Pde

232619!

Equato

Fig. 6-32

By rotating the sun chart and positioning the winter solstice
at the bottom, it will look like this The light-color area,
which indicates more sunlight, is called yang (sun). The dark-

Staimet ScJstice

E

Fig. 6-31
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color area has less sunlight (more moonlight) and is called yin
(moon). Yang is like man. Yin is like woman. Yang wouldn't
grow without yin. Yin couldn't give birth without yang. Yin is
born (begins) at the summer solstice and yang is born (begins) at
the winter solstice. Therefore, one little circle, yin, is marked on
the summer solstice position. Another little circle, yang, is
marked on the winter solstice position.

Summer

Veins

Writer
Solstice

Fig. 6-33

In general, the yin-yang symbol is a Chinese representation of
the entire celestial phenomenon. It contains the cycle of the sun
through the four seasons.

The teardrop-looking symbol is bounded by three semicircles,
where the two smaller ones each has a diameter half the length of
the diameter of the larger semicircle.

Fig. 6-34
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To find the area of the yin-yang is simple, if we realize that what
is taken away from the large semicircle, by the smaller overlapping
semicircle, is added back to it again. So its area is simply that of the
larger semicircle. (See fig. 6-35.)

To find the perimeter, we refer you back to chapter 1, where we
established that the sum of the semicircular arcs inside another
semicircle equals the larger semicircular arc (see pages 34—35).
Therefore, since the sum of the lengths of the two smaller semicir-
cular arcs equals the length of the larger semicircular arc, the yin-
yang has a perimeter equal to the circumference of the larger circle.
It may not appear that way, but it is so.

a

a
Fig. 6-35a

An alternative to the yin-yang is shown in the figure below (fig.
6-36). What is the area and perimeter of one of the "teardrop"
shapes? And what is the area of the center region (that outside the
teardrop shapes)?

Fig. 6-35b
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(/iT
Fig. 6-36

As before, we shall assume symmetry, and as is indicated in
figure 6-37, the radius of each small circle is r.

To find the perimeter of one of the teardrop shapes is easy, if we
recognize that the small-circle portion of the teardrop shape is an
arc of 180° + 45° = 225° of one of the small circles and an arc of
1800 — = 1350 of another congruent small circle. Together that
comprises the full 360° of a small circle. In addition, we need the
arc length of one-quarter of the larger circle. To determine this, we
first need to get the radius of the larger circle. With the Pythagorean
theorem applied to right triangle BMG, we get B/vP + MG2 = BG2,

so that, because BM = MG, BM = r ñ. The large circle has radius
length r + r

The computation is then straightforward:
The perimeter of the teardrop shape equals the circumference of the

small circle plus one-quarter of the circumference of the larger circle.

Perimeter = 2yrr + ![2r(r + r..h)] = +
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To find the area of one of the teardrop shapes, we first will find
the area of the center four-arc shape. Here we will focus on the
square BGEH. The area of the center four-arc shape can be found
by subtracting the areas of the four quarter circles from the area of
the square BGEH. This can be done as follows:

Area = (2r)2 — = — = r2 (4—
)

Since the teardrop shape is comprised of one small circle and one
of the four congruent outer regions of the large circle (which is not in
the smaller circle), we simply subtract the areas of four small circles and

the center four-arc shape from the area of the larger circle and take one-

quarter of this result to get the area of one of these four "outer portions."

[Area of larger circle — Area of center four-arc shape — Area

of four smaller circlesl

ir 2

= _[Jr(r + — r2 (4— iv) — 4(7cr2)
4

To finish finding the area of one of the teardrop shapes, we

simply add this area to = of the area of one of the smaller cir-

cles, which is (,vr2). Thus the area of one of the teardrop shapes

is r2 (,vr2)=



Using it to Apportion a Pizza Pie Equally for Three People

With the task before us to divide a circular pizza equally among
three people, we are faced with the problem of how to actually
make the cuts. The pizza can be divided up evenly in many ways.
We will show you four different ways here and challenge you to
find other configurations that will yield three equal pieces of pizza.

Traditional pieces Concentric pieces Parallel pieces Fancy pieces

0 ©
Fig. 6-38a Fig. 6-38b Fig. 6-38c Fig. 6-38d
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tF

Fig. 6-37
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Traditional Pieces

It

If somebody would actually go to a pizza restaurant with a pro-
tractor, he would draw laughs from others and yet be able to draw
the appropriate radii that would partition the circle into three equal
parts, each of which is = 1200 —if the cheese cooperates. One
can also bring a piece of string to the restaurant and place it around
the pizza. Dividing the string into three parts, he would get each
piece as one-third of the circumference so

b
3 3

Everybody gets an equally big slice (sector).

Concentric Circles

Of course this concentric division is hardly suitable in the
restaurant, yet this version, from a mathematical point of view,
is quite interesting.

Fig. 6-39
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The radius r (of the initial circle c) is given. We must determine
the two other radii, r1 and r2, so that the inner circle will be equal
in area to the two annuli.

Given: radius of the larger
circle, r

Sought-after: r1 and r2 , to make
the three areas equal

Solution: r1 = r; r2 = r

Our objective is to find the values of r1 and r2 in terms of r so that
Area =Area = Area

1 annulus BC annulus AC

We begin with Area1 =

To get the inside annulus, we subtract the areas of the two cir-

cles making up the annulus:
Area =Area —Area =itr2—itr2=it(r2—r2)annulusBC 2 1 2 1 2 1

We repeat this procedure for the outside annulus:
Area =Area—Area =mr2—mr2=m(r2—r2)annulusAC 2 2 2

For the three regions (or pieces) to be equal in area, the following
must be true:

A

Fig. 6-40
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Then by dividing through by it, the following is arrived at:
2_ 2 2—r2—rj —, —r2

= — which gives us that 2 ,2 = and so r2 = r1

enables us to get2r22—

Then substituting for r2, we get

4 — = and so 3 r2 = or r1 =

and consequently, r2 = r1 = =

Fancy Pieces (Using the Teardrop Shape)

We will use semicircles with the diameter trisected (i.e., divided
into three equal segments).

Now that you have had some experience with this shape, you
can see below how this will be divided into semicircular arcs.

Given: r

Sought-after: r1 and r2, so that
AB is trisected

Al

Solution: r1 = and r2 =

Fig. 6-41

We will first find the area (Area ) of the teardrop shown above:teardivp
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r = —r and r2 = —r'3 3

Applications of it 201

1 2 1 (2 2 2

2 2

2 1 2

2 2 ) 18

AreaSC(M) =

Areateardrop = AreaSC(M) — AreaSC(M + A reaSC(M = — — + —

Areateardrop = !,rr2

If this teardrop has an area of one-third of the circle, then
clearly the other one (above the horizontal diameter) also must be
one-third the area of the circle. So, if these two teardrops encom-
pass two-thirds of the area of the circle, then the remaining portion
in the middle must also be one-third of the area of the circle.

Fig. 6-42

B



• a 2sin— ==f ; = r sin and MR2 = MB2 — RB2
2 r

we then get

(r—h)2 = r2 r2 (1 = (*)

a
= and this can be written as

Area sector (a)
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Parallel Pieces

If one cannot find the midpoint of the pizza (see the first method),
cutting parallel pieces offers us another approach, but it will get
more difficult than expected! (Caution: the average reader may want
to just look at the result, since the method is a bit complicated.)

B

Given: Circle with radius r

Sought-after: a or h S

Solution: a=

C

D A

Fig. 6-43

It should be clear that if we are looking for the point at which
to make our two cuts, namely, Afi and CD, we would have to
know the length of h or the measure of a.

In the triangle iVvIRB we get
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Using the relationship marked (*), above, we get

I I • a a
Area MBM MR (r — h) 2r sin-i- r

With the double angle formula (sin 2x = 2sin x cos x), this
allows us to simplify further'2

Area MBM r2 sin a

Area =Area —Areasegment MBM 360 2

=(

The latter shall be a third of the circular area A, so that

it sin a)r2 = itr2, which simplifies to

it — sin a = it, yielding sin a = — it.

This transcendental equation cannot be solved in the tradi-
tional way. As an approximation, we can use a calculator and get
a = 149.2741654...° 149.3°.

With r — h = r cos we then finally get h = r• (1 — cos

0.7350679152r which is almost h
4

We have thus divided the circle into three equal parts in four dif-
ferent ways. Can you find another method for trisecting the circle?

2. We can also get this directly if one knows the formifla for the area of a tnangk A = a b sin y
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The Constant Ring

There are times when it plays a somewhat minor role. It is actually
upstaged by some very elegant techniques. This is the case with the
following. A chord of the big circle touches the smaller circle in
exactly one point (i.e., it is tangent to the smaller circle). We are
given the length s of this chord, and we are asked to find the area
of the shaded region (the ring).

You would think that there is not enough information given
here, or is it possible to formulate this described situation in a
variety of ways? The following figures show the segment AB main-

taining its constant length, and yet the area between the circles (the
ring) takes on a very different appearance. It would appear, by
observation, that each configuration would yield a different area
between the circles. Surprisingly, that is not the case. They all have
the same area, as we shall see.

Fig. 6-44
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A
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Fig. 6-45c Fig. 6-46

By the Pythagorean theorem:

r2 = (r - h)2 + H2 = r2 - 2rh + h2 + H2

Therefore, = 2rh — h2

Area = irr2large circle

Area = ir.(r—h)2= irh2small circle

Area. = Area •de — Areajflsjde = rr2 — (& — 2icrh + ,rh2)ring outsi

= 2rrh — = ,r(2rh — h2)

B

Fig. 6-45a Fig. 6-45b
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From this equation, we can substitute to get

Area. =ring

So the area of the ring only actually depends on the length s of the
chord—and, of course, it plays its usual helpful role!

Although the diameter of neither circle was given, the problem shall

nevertheless have a unique solution. We can therefore let the smaller
circle become very small, so small that it has essentially zero length.

The ring then consists only of the larger (or outer) circle, whose
diameter is then the chord (2r = s).

The ring area can be calculated now simply with the equation for
the area of a circle:

Area = ,rr2 =

The Constant Ring Extended

We shall consider another situation that can be viewed as an out-
growth of the ring area. We take once again a chord of specific
(constant) length, and this time we will not have a concentric circle
inside the larger circle, rather one that is tangent to the larger circle
and, of course, as before, tangent to the given segment.

We draw a circle c with the radius r, such that a given (line) seg-
ment of length t is a chord of this circle (fig. 6-48).

Furthermore, we draw, respectively, the inner touching circles
(with the radii r1 and r2).

What is the area of the lightly shaded region, which is formed
by the six semicircular arcs shown in the figure?

At first, we notice that there are, of course, many different pos-
sibilities to draw such a circle c, as seen in the following figures.'3

13. Note the connection between this situation and the arbelos (p. 211).
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C

207

/

B

With the Pythagorean theorem, there are various ways to estab-
lish the relationship between the tangent segment and the radii of
the two circles.

(

Fig. 6-47

Fig. 6-48
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Pythagorean theorem Mean proportional The product of the seg-
applied to right AEMC of the altitude to the ments of the two inter-

hypotenuse of right MBC secting chords

CE2=AE•BE CE•DE=AE'BE

r2 = (r - 2r1)2 + = 2r1 ' 2r2 = ' 2r2

= + • r2 r1 • r2

t2=16r1(r—r1),yet t2=16r1'r2 t2=16'r1'r2
r — r1 = r2 (explained below)

t2=

This leads in all three cases to
t2=8.2r r whichcanbewrittenas r.12 8 12

We know that the diameter of the largest circle can be repre-
sented as 2r = 2r1 + 2r2, so we get r = r1 + r2, or written another
way, r2 = r— r1.

We can find the area of the lightly shaded region by subtracting
the areas of the two smaller circles from the area of the largest
circle. We do this as follows:

Area. . =Area . —Area. —Area.lightly shaded region largest circle M circle M, circle M2

= it(—2,12 + 2r. r1) = 2itr1(r— r1) = 2itr1 . r2

But from above we already established that = 2r1 r2, so we
then substitute to get

Area. . =Area . —Area. -Area.lightly shaded region largest curIe M curIe M, curIe M2 8

which indicates that the area is independent of the radius r of the
circle c.

The lightly shaded circular arc figure always has the same area
if we put any circle through the ends of the (line) segment with the
length t. Compare this to the arbelos on page 211.
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Suppose you have four equal pieces of string. With the first
piece of string, one circle is formed. The second piece of string
is cut into two equal parts, and two congruent circles are
formed. The third piece of string is cut into three equal pieces,
and three congruent circles are formed. In a similar way, four
congruent circles are formed from the fourth piece of string.

They are shown in figure 6-49. Note that the sum of the circum-
ferences of each group of congruent circles is the same (since we
used the same length string for each set of circles).

Fig. 6-49

0000
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Circle Diameter Each circle's Sum of the Each circle's area Sum of the Percent of area of
circumference circles' circum- circles' areas circle P represented

ferences by the sum of the
areas of smaller cir-
des

P 12 l2ir l2ir 36ir 36ir 100

R 6 6it l2it 9ir l8it 50

Q 4 4ir l2ir 4ir l2it

3 3ir l2ir 2.2Sit 25

An inspection of the above chart shows that the sum of the cir-
cumferences for each group of circles is the same, yet the sum of
the areas is quite different. The more circles we formed with the
same total length of string, the smaller the total area of the circles.
Just what you would likely not expect to happen!

That is, when two equal circles were formed, the total area of
the two circles was one-half that of the large circle. Similarly, when
four equal circles were formed, the total area of the four circles was
one-fourth of the area of the large circle.

This seems to go against one's intuition. Yet if we consider a
more extreme case, with, say, one hundred smaller equal circles, we
would see that the area of each circle becomes extremely small, and
the sum of the areas of these one hundred circles is one-hundredth
of the area of the larger circle.

Try to explain this rather disconcerting concept. It ought to give
you an interesting perspective on comparison of areas.

What would happen if the circles made from this piece of string
were not of equal size? Try to use the above argument to see that
you would end up with an analogous result.
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Unusual Circle Relationships

The concept of it is neatly embedded in computation with circles.
Sometimes it merely plays an accompanying role, as is the case
with some fascinating circle relationships that have been known to
us for over two thousand years.

Archimedes came up with some rather astonishing geometric
phenomena regarding circles. They show an intuitive facility with
the concept of it, even if he didn't have it calculated as accurately
as we have today.

We offer two such examples just to fascinate you with some
unusual circle relationships.

/1
.4

The arbelos, or shoemaker's knife, is obtained by drawing three
semicircles, two along the diameter of the third. The two smaller
semicircies can be of any size, as long as their diameters encompass
the entire diameter of the third semicircle. Thus, AP + PB = AB.

What Archimedes said is that the area between the semicircies
(unshaded) is equal to the area of the circle with PQ as diameter.

Q

P

Fig. 6-50
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Notice that PQ is the perpendicular segment from P. the point of
intersection of the two smaller semicircles, to Q, the point where
the perpendicular meets the largest semicircle.

This can be easily proved. We only need to remember a theorem
from elementary geometry, namely, that the altitude to the
hypotenuse of a right triangle is the mean proportional between the
two segments along the hypotenuse. That is, PQ is the mean propor-

AP PQ
tional between AP and PB, or With the radii of the two
smaller semicircles having lengths a and b, respectively, this gives us

h2 =2a.2b=4ab,so
Q

N/ N
,1

N

b
8

Fig. 6-51

First, we shall represent the area of the region between the semi-
circles. This is done by finding the area of the largest semicircle and
subtracting from that area the areas of the two smaller semicircles.

2 g2
2 2 2

2 2 2=—ia +2ab+b —a —b2'

=

= irab

I,
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The area of the circle with diameter PQ and radius is
(h)1

ivab

Both areas are the same.

Another ingenious relationship that Archimedes discovered and
published is called Salmon. It states that the area bounded by the four

semicircies (in fig. 6-52a), where AB = EF is equal to the area of the
circle with the diameter PS, where PS is the perpendicular line segment

through R and having endpoints on the two semicircles. The next few
figures will demonstrate this with a variety of different arrangements.

In each case, compare the area of the lightly shaded region to
that of the circle.

Fig. 6-52a
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Fig. 6-52b

$

Fig. 6-52c
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Notice that in the third of these variations, we are approaching
a special case of the arbelos (fig. 6-52 a,b, and c), when the little
semicircle at the bottom almost disappears.

To prove this, we subtract the area of the two equal semicircles
with radii EF = AB = a from the large semicircle with diameter AF
We then add the area of the semicircle with radius CR = b.

+b)2
[2 ] 2

[1 / 2 2" 21 1 2+4ab+b)—Jra i+—irb
[2 ] 2

= jr(a2 + 2ab+b2)

=ir(a+b)2

The area of the circle with radius a + b is + b)2, and so they
are equal, despite the relative size of the semicircles. These are two
truly wonderful relationships, since they are independent of the rel-
ative sizes. Just imagine to have discovered these relationships
without the tools and experience we have today.

it and the Imaginary Unit i

After all is said and done, it also has a role in mathematics to
help explain certain concepts. You may recall that an imaginary
number is one that includes i = However, is also an
imaginary number? To answer this question, we need it. The

mathematically curious reader should be able to follow the proof
below. For those not so inclined, suffice it to say, we are able to
show (with the help of it) that is a real number, and not an
imaginary number, as might have been suspected.
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The proof follows:

With x = in = cos x + i • sin x we obtain

e'2 = cos + i • sin = 0 + i = i, which yields

Jr

i = e' 2, which yields

i = )i = = 0.207879576351...

Therefore, is a real number!
In 1746 the famous mathematician Leonhard Euler showed that

j' adopts infinitely many values, all of which are real.
(it

— —+2k,r

For example, = e
2 with k E Z (Z = set of all integers);

when k =0: = (e'2 )i = = 0.20787957635 1...

We have now gone through a wide variety of applications of it.
Some were of the real-life variety, and others made use of the
circle's applications. You now realize that it can be seen as a
number with unusual properties or as the ratio that defines it. In the
latter case, we are talking about circles. In the former case, we see
the constant interrelationships between seemingly unrelated con-
cepts in mathematics surfacing to the fore.



Chapter 7

Paradox in ic

A paradox is a seemingly contradictory statement that may
nonetheless be true. In geometry paradoxes appear in many forms.
The following is one such example. Consider four congruent cir-
cular objects (fig. 7-la) tied together by an elastic string. Then shift
the circles to the position shown in figure 7-lb. In which case is the
elastic string longer?

Fig. 7-la Fig. 7-lb

217
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If we look at figures 7-2a and 7-2b, we notice that in each figure
the elastic string is comprised of four line segments, each equal to
the diameter of the circles. Therefore, the only comparison needed
is that of the lengths of the circular arcs.

Fig. 7-2b

In figure 7-2a, the four arcs are each one-quarter circle; hence
the remaining elastic (four quarter arcs) is that of the circumference
of the circle (we would need our trusty it to determine its length).
The arcs of elastic string in figure 7-2b are each supplementary to
one of the angles of the rhombus' in the middle of the figure. Yet the
sum of the angles of the rhombus (as for any quadrilateral) is 360°.
Therefore the sum of the elastic string arcs must also be a full 3600,
and the remaining elastic string length is that of the circumference
of the circle. Lo and behold, the two pieces of elastic string have the
same length. Appearances can be deceptive!

Rolling Cylinders—it Revolutions!

Heavy loads are often transported on rollers, which are not con-
nected to the object being transported. What might be the advantage
to using rollers that are not connected to the transported object?

I A rhombus is a quadrilateral with four equal sides A square is a special type of rhombus.

Fig. 7-2a
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Fig. 7-3

ED

How far does the transported object moved to the right, if the
rollers, which have a diameter of 1 foot, have made one revolution
on their own axes? One would expect that the object has moved the
distance of one revolution, or the length of the circumference of the
circle. In this case, it feet.

The easiest, and perhaps most elegant way, to explain the move-
ment of the object on the rollers is to think of the rollers moving it
feet in one revolution, and the object also moves it feet with respect
to the rollers. Therefore, the object moves 2it feet with respect to
the ground. We simply add the two distances.

This becomes more complex (yet analogous) when we consider
two congruent circular disks. Consider one disk rolling around the
other disk. How many revolutions will the moving disk make as it
travels once around the stationary disk? You will probably guess
that since the circumferences are equal, the moving disk will have
made one revolution. Wrong! It makes two revolutions.

2irr
Fig. 7-4
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Try it with two large coins. Mark their starting positions and
then notice how many revolutions the moving coin has made when
it has traveled halfway around the stationary coin.

P

Moving Disk - Starting Position

Path of the moving circle

You will notice that the moving coin has made two revolutions
by the time it returns to the starting point of the stationary circle.

A Constant among Concentric Circles

The now-famous ratio of the circumference to the diameter of a
circle, it, shows itself nicely as a constant relating two or more con-
centric circles.

Consider the following problem:

Two concentric circles are ten units apart, as shown below (fig.7-6).

What is the difference between the circumferences of the circles?

Moving Disk - half-way
around stationary Disk

Fig. 7-5
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The traditional straightforward method for solving this problem
is to find the diameters of the two circles. Then, finding the circum-
ference of each circle, we would merely have to subtract to find
their difference. Since the lengths of the diameters are not given,
the problem is a bit more complicated than that. Let d represent the
diameter of the smaller circle. Then d + 20 is the diameter of the
larger circle.2 The circumferences of the two circles will then be itd
and m(d + 20), respectively.

The difference of the circumferences is m(d + 20) — itd = 2Oir.

2. That is, the diameter, d, of the smaller circle plus twice 10, the distance between the circles.

Fig. 7-6

Fig. 7-7
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A more elegant, and vastly more dramatic, procedure would be to
use an extreme case. To do this, we will let the smaller of the two cir-
cles become smaller and smaller until it reaches an "extreme small-
ness" and becomes a "point."3 In this case, the circle shrunk to a point
would become the center of the larger circle. The distance between the

two circles now becomes simply the radius of the larger circle. The dif-

ference between the lengths of the circumferences of the two circles at

the start is now merely the circumference of the larger circle,4 or 2Oir.

Although both procedures yield the same answer, notice how
much more work is used for the traditional solution by actually
taking the difference of the lengths of the circumferences of the two
circles, and how using the idea of considering an extreme situation
(without compromising any generality), we reduced the problem to
something relatively easy.

We could also look at the problem without being "distracted"
by the concentric placement of the circles. We are looking for the
differences of the circumferences C2 — C1, where C1 = itd1 and
C2 = md2. So that C2 — C1 = itd2 — itd1 = — d1). Verbally

expressed, we have shown that the difference of the circumferences
is equal to it times the difference of the diameters. Another formu-
lation would be that the ratio of the differences of the circumfer-
ences to the differences of the diameters is it.

A Rope around the Equator

We are about to embark on an amazing paradox. We will establish
a "fact" you will probably find intuitively impossible to accept.
Before we begin, let's assume that the earth is a perfect sphere—

3. We can do this because we weren't given the size of either circle, so as long as we preserve
the length 10, we can consider the two circles to take on any convenient sizes.

4. Since the smaller circle has a circumference of 0.
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just to make our work a bit easier. We begin by placing an imagi-
nary rope (tautly) around the equator of the earth. Assume also that
the earth is a smooth surface along the equator. We will now
lengthen the rope by exactly one meter. The rope is now loose.
Let's situate the rope so that it is everywhere equidistant from the
surface of the earth. Our question is: Can a mouse easily fit in the
space between the rope and the surface of earth? What do you
think? The answer will certainly surprise you.

We are not the inventors of this problem. Apparently the first
publication of this "classic" problem is contained in the article
"The Paradox Party. A Discussion of Some Queer Fallacies and
Brain-Twisters" by Henry Ernest Dudeney:5

Mr. Smoothly, the curate, at the end of the table, said at this point
that he had a little question to ask.

"Suppose the earth were a perfect sphere with a smooth sur-
face, and a girdle of steel were placed round the equator so that it
touched at every point."

5. The Strand Magazine. An Illustrated Monthly. ed. George Newnes, 38, no. 228 (December

1909): 670—76; Amusements in Mathematics (London: Thomas Nelson and Sons, 1917; reprint, New

York: Dover, 1970), p. 139.

Fig. 7-8
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"I'll put a girdle round about the earth in forty minutes," muttered

George, quoting the words of Puck in A Midsummer Night's Dream.

"Now, if six yards were added to the length of the girdle,
what would then be the distance between the girdle and the earth,
supposing that distance to be equal all round?"

"In such a great length," said Mr. Aligood, "I do not suppose
the distance would be worth mentioning."

"What do you say, George?" asked Mr. Smoothly.
"Well, without calculating I should imagine it would be a

very minute fraction of an inch."
Reginald and Mr. Filkins were of the same opinion.
"I think it will surprise you all," said the curate, "to learn that

those extra six yards would make the distance from the earth all
round the girdle very nearly a yard!"

"Very nearly a yard!" everybody exclaimed, with astonish-
ment; but Mr. Smoothly was quite correct. The increase is inde-
pendent of the original length of the girdle, which may be round
the earth or round an orange; in any case the additional six yards
will give a distance of nearly a yard all round. This is apt to sur-
prise the nonmathematical mind.

As we begin to tackle this problem, we will assume that the earth is
a perfect sphere,6 and, for the sake of simplicity, we will assume
that the equator is exactly 40,000 kilometers long. We are even
going to be more extreme than the story above, in that we will only
add one meter to the length of the rope.

Before beginning, what would you guess the answer to be?
Remember we are extending the 40,000-kilometer rope, which is
taut around the equator, so that it is now 40,000.00 1 kilometers
long and is now placed equidistant above the equator. If you are
doubtful about a mouse fitting under this rope, would you think we
could slide a pencil under this rope?

6. In reality the earth is a geoid, not a perfect sphere.
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Let's consider the figure below (fig. 7-9).

The familiar circumference formulas give us

C
C = 2itr, or r = —

2,r

and

c+1
C + 1 = 2itr, or R =

2,r

We need to find the difference of the radii, which is

c+1 C IR—r= — — = 16cm
2,r 2,r 2,r

225

Can you imagine, there is actually a space of about 16 centime-
ters between the rope and the earth's surface all the way around? So
there is more than enough space (about 16 cm) for a mouse to crawl
beneath it.

Fig. 7-9
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You must really appreciate this astonishing result. Imagine, by
lengthening the 40,000-kilometer rope by 1 meter, it lifted off the
equator about 16 centimeters!

Consider the original problem diagramed above. You should
realize that the solution was independent of the circumference of
the earth, since the end result did not include the circumference in

its final calculation. It required only calculating Here again you

see how it stays in the picture even when the dimensions of the
circle have disappeared.

Instead of the earth, we could choose an apple, a Ping-Pong
ball, or even a disk such as a dollar coin or a penny.

A thread, which is 1 meter longer than the apple's circumfer-
ence (coin's circumference), is concentrically wound around an
apple (or a coin). What distance, a, is the thread from the apple's
surface (or, for that matter, from the coin's edge)?

Fig. 7-lOb

Let r equal the radius of the apple, and r + a is then the radius
of the thread (at 1 meter longer).

(1) 1 thread = c apple + 1 = 2irr + 1

Fig. 7-lOa
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With + 1 = 27((r + a) = + 2ira, we immediately again get 1 =
2ira; this yields a = As expected, we get the same results as before
a = 0.1591549430... 0.159 m 16 cm, once more emphasizing that
in this situation the result is independent of the apple's radius.

This independence of the radius or circumference (of the earth,
an apple, or a Ping-Pong ball) is particularly confirmed here.

The distance a is only dependent on the chosen extension (1 m)—
and naturally on our trusty it.

You might feel compelled to carry out such an experiment once
(for example, with a coin, a Ping-Pong ball, and a basketball); this
then convinces the skeptics, too.

We can take advantage of this independence further by solving
this problem with the useful problem-solving technique of consid-
ering extreme values. Suppose we reduce the original circle as far
as is possible. Let's go even further so that it reduces to a point.
Then the length of the radius of the circle of the rope is now what
we are to find and is quite easily obtained.

The result nevertheless remains the same. In our problem, the
extension of 1 meter is itself the circle's circumference, and its
radius is the sought-after distance, a.

C + 1 =1

Fig. 7-11
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Using this technique, we suppose the inner circle (above) is
very small, so small that it has a zero-length radius (that means it is
actually just a point). We are required to find the difference between
the radii,R—r=R—O=R.

So all we need to find is the length of the radius of the larger
circle and our problem will be solved. With the circumference of
the smaller circle now 0, we apply the formula for the circumfer-
ence of the larger circle:

C+1=O+1=2mR soR=1
2jr

This problem has two lovely little treasures. First, it reveals an
astonishing result, clearly not to be anticipated at the start, and,
second, it provides you with a nice problem-solving strategy that
can serve as a useful model for future use.

The result sometimes causes people to repeat their calcula-
tions—to see if they really have misjudged the original problem, or
if they really can't trust their intuition. This is for many people a
paradox because the result is independent of the earth's radius. But
the result is dependent on it.

This paradoxical result can also be formulated in the following way:

For the difference of the circumferences of two concentric cir-
cles with the radii R and r and the distance a between the circum-
ferences, we get

C1 — C2 = 2mR — 2mr

But R = r + a

Therefore, C1 — C2 = 2itR — 2mr = 2m(r + a) — 2mr

= 2mr + 2ma — 2mr = 2ma

Notice the similarity of the "formula" for the difference of the
circumferences and the formula for the circumference of a circle.
Both are dependent on it.
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To provide a better (or deeper) understanding of this unusual
resulting dependency on it, consider the following diagram, where
each of the two circumferences is "rolled out" to form a straight line.

It may be helpful (because of 2it 6) to consider the circumference

of a circle as about six times as long as the accompanying radius to

understand the issue at hand. We may then regard the radius as one-

sixth of the circumference. Therefore, the radius MA is one-sixth of

the length of circumference AF, and MB is one-sixth of the length of

BD. Consequently, the difference, a (or AB), between the two radii is

also one-sixth of the difference EF of the circumferences.

The length of AB is only dependent on the difference between
the two circumferences, not on the lengths of the respective circum-
ferences. However big (or small) AF and BD may be, when the dif-
ference EF is exactly 1 meter long, then the difference AB between
the two radii is about meter long, or about 17 centimeters. This
also applies when the lengths BD and AF are represented by the
equator and the rope is 1 meter longer.

Suppose we chose a square instead of the (equator) circle. We
can examine an analogous situation that may shed further light on
this unusual situation.7

7. This proposal was made by Heinrich Winter. Entdeckendes Lernen (Wiesbaden! Braun-
schweig: Vieweg. 1991). p. 163.

u+v

A u+v
V

Fig. 7-12
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A rope in the form of a square is placed around a square. The
perimeter of the square rope is 1 meter longer than that of the orig-
inal square and placed so that the sides of both squares are parallel
and equidistant all around.

What is this distance, a, that the rope is from the square's sides?
This is a question analogous to that of the circle before.

a

a

S $

S

a

t
s a

Fig. 7-13

side perimeter
Initial square s 4s

Rope square s + 2a 4(s + 2a)

The diagram shows clearly that the extra 1 meter rope length is
accounted for by eight equally long pieces, which overlap at the cor-
ners, and that they are exactly as long as the distance between the par-

allel sides of the two squares. Therefore, the distance between the par-

allel sides of the squares must be of 1 m = 0.125 m = 12.5 cm.
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The distance, a, between the squares is also independent of the
size of the initial square. It is merely one-eighth of the difference of
the perimeters of the rope and the square. Remember that the dis-
tance between the two concentric circles before was also a constant

times the difference of the perimeters (i.e., circumferences).
How are these two constants analogous? Let's consider similar sit-
uations for other regular polygons.

Instead of a square, one could also use an equilateral triangle or,
in general, any regular polygon, and seek to find the distance
between the 1-meter-lengthened rope and the sides of the polygon.

Around a regular polygon a rope is placed that is 1 meter longer
than the perimeter of the polygon. The rope is shaped into a similar
polygon and placed so that the respective polygon sides are parallel
to the rope polygon.

What is the distance, a, that the rope is from the sides of the
polygon? More precisely, what is the distance between the parallel
sides of the two polygons? This will vary with the number of sides
of the regular polygon. Look at the following results. (A detailed
calculation can be found in appendix D.)

For a three-sided regular polygon (an equilateral triangle)

s+2b b

Fig. 7-14

a 0.096 m = 9.6 cm
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For a four-sided regular polygon (a square)

a
I

a

S

a

S

Fig. 7-15

a = 0.125 m = 12.5cm

For a regular pentagon

s+2b b

Fig. 7-16

a 0.138 m = 13.8cm
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For a regular hexagon

Fig. 7-17

14.4 cm

Notice how the value of a, the distance of the 1-meter-length-
ened rope from the regular polygon, increases as the number of
sides of the regular polygon increases. What would you expect will
be the maximum value of a? The maximum number of sides for a
regular polygon could be considered a polygon that is like a circle.
So we would expect that a will get gradually larger until it reaches
the value we had for the circle, about 15.9 centimeters.

The greater the number of sides of the regular polygon, the
larger the distance, a, that separates the two similar polygons. Does
a increase infinitely? Of course, this distance, a, can never become
larger than that for a circle.

As the number of sides, n, gets infinitely large, we obtain for the
perimeter (in this case the circumference of a circle) the limiting
value C = 2r. Now it reappears again.
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In the case of the regular hexagon, the distance a (14.4 cm) already

lies relatively near the limit value (which is approximately 15.9 cm)
that we obtained from the circle earlier (rope around the equator):

lim = = 0.15915494...
it 2ir2n tan —
n

and a = = 0.1591549430... 0.159 m cm
2jr

For n = 3, 4, ..., 24 we get the following distances between the
corresponding parallel sides of the n-gons:

n exact value for a approximate value for a

3 0.096225044
18

4 0.125
8

5 0.13763819
V250 100

6 0.14433756
12

0.14832295

14

8 + 1 0.15088834
16 16

9 cot— 0.15263763

18

10 0.15388417
80
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11 COtjj 0.15480396
22

12 + 1 0.15550211
24 12

13 0.15604459

14 0.15647450

15 0.15682100

16 +1 0.15710435
'1512 256 32 32

17 0.15733904

18 0.15753560

19 0.15770188

20 +1 0.15784378
'4800 320 40 40

21 0.15796586

22 0.15807165
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23 0.15816392

24 +1 0.15824487
48 48 48 24

It becomes clear why the distance a, in the case relating to a
circle, escapes our immediate intuitive understanding. The topic of
infinity is perhaps at fault: the 1-meter extension to the rope
(around the equator) must be cut into an "infinite number" of parts
if we are to follow the polygon models just considered.

We can have some fun with this concept of independence of
circle size—relying only on our friend, it. This time, instead of
placing a rope around the equator, 16 centimeters above the surface
of the sphere as we did before, we shall construct an imaginary
railway track around the equator. However, the inner rail will touch
the surface of the equator, while the outer rail is suspended in the
air above the equator (perpendicular to the surface).

How many meters longer would the outer rail be than the inner
rail of such a railway line round the equator, if the inner rail is
exactly 40,000,000 meters long?
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We will let a represent the distance between the two rails. Here
a = 1.46 meters.

From previous examples, you might already be able to predict
what the outcome here will be. To what extent will the answer be
dependent on the length of the equator?

We know that the circumference (c) of the equator is (for our pur-

poses) 40,000,000 meters, and the distance between the rails (a) is
1.46 meters. We seek to find the difference of the two circumferences
of the rails: C — c, where C is the circumference of the outer rail.

C — c = 2m(r + a) — 2mr = 2ma, which you will again notice is
independent of the size of the two circles. To find the difference of
the two rail lengths, we simply multiply 2it times 1.46, the value of
a. This is 9.1734505484821962316. . . 9.17 meters. The result
would be the same (9.17 m) if we chose any other sphere instead of
the earth. That may be hard to accept, but our trust in it always

remains faithful to us, regardless!

Fig. 7-18
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An analogous situation arises if you were to walk along the
equator (40,000,000 m) and ask: How much further will your head
travel than your feet, if you are 1.8 meters (about 511") tall?

The famous novelist Jules Verne has one of his characters trying
to calculate which body parts travel farther during a world tour—
the head or the feet. This is what we are after here.

From the previous example, we can see that the answer is again
independent of the length of the walk. Rather, it is dependent on it. We

need merely multiply 2it times the person's height (in this case 1.8
meters) to get the answer: 11.30973355292325552... 11.31 meters.

So for the trek along the equator, the head will have traveled
almost 11.5 meters farther than the feet. That the result is inde-
pendent of the (earth's) radius becomes more obvious when the fol-
lowing situation is considered.

A man, who is 1.80 meters tall, walks once around the earth's
equator and also around a cylindrical space flight capsule (cir-
cumference 20 m) in space. In both cases, his head has traveled a
greater distance than his feet. How much longer would the dis-
tance traveled by his head be when he walks around the equator,
as compared with when he walks around the space flight capsule?

Let's consider the extreme case, that the man's feet are attached
to a rotatable axle and he does a complete circle around this axle
with his body stretched out. We must find the distance that the head
has traveled, while for our purposes his feet have traveled an
almost-zero distance.

Similarly to our earlier problem, we consider the almost-zero
distance the feet traveled to be zero. So that all we need to find is
the circumference of a circle of radius 1.8 meters. That is, C = 2itr
= 2it(1.8) 11.31 m.
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This might also be seen in an "upside-down" version, namely,
a trapeze artist holding on to a bar with his hands and spinning
around—his hands now take the place of his feet, and his feet take
the place of his head.

In all these cases, we notice that the size of the circle is not the
critical issue; rather, only the value of it gives us what we seek. This
should let you appreciate even more the power of it.

Another Surprise

Now that your intuition has been somewhat tarnished by the surprising

results of the rope around the earth, we present another possible situa-

tion. The rope that is 1 meter longer than the circumference of the earth

Fig. 7-19
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is now no longer spaced out over the equator. Rather, it is pulled taut
from one external point. Remember when the rope was equally spaced

above the equator, there was merely a space of 16 centimeters. Now
you will be surprised. The 1-meter-longer rope pulled taut from a point,

where the rest of the rope "hugs" the earth's surface, reaches a point
about 122 meters above the earth's surface.

Let's see why this is so. This time the answer is clearly depen-
dent on the size of the earth and not exclusively on it—but
remember it will also play a role here.

From the exterior point T, the rope (1 meter longer than the cir-
cumference of the equator) is pulled taut so that it hugs the earth's
surface until it determines the points of tangency (S and Q). We

seek to find how high up from the surface the point T is. That means
we will try to find the length of x or RT.

Remember the length of the rope from B through S to T is 0.5

meter longer than the circumference of the earth. So that the lengths

of BS + ST = BSR + 0.5 m. We are going to try to find the length

of TR (orx).

Fig. 7-20

T
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So let's review where we are: the rope lies on the arc SBQ,
which ends in the points S and Q and at points S and Q goes tan-

gential to the point T. The lengths in the figure above are marked,
and a = mLRMS = mLRMQ.

The length of the rope + 1 = + 1, and we get the following
relationships:

y = b + 0.5. This is equivalent to b = y — 0.5 (y is 0.5 m longer
than b, because of the extension by 1 m).

In L\MST, the tangent function will be applied: tan a = and

y = r • tan a.
We can form the ratio of arc length to central angle measure and

get the following:

b 2rr 2ic.r.a— = , and then we can get b =
a 3600 3600

With C = we can find the earth's radius (assuming that the
equator is exactly 40,000,000 meters long).

C 40,000,000r= =
2ir 2jr

Combining the equations we have above, we get the following:

2ir.r.a =y—0.5=r.tana—0.5
360°

We are now faced with a dilemma, namely, that this equation
(obtained above) cannot be uniquely solved in the traditional
manner. We will set up a table of possible trial values to see what
will fit (i.e., satisfy the equation).

2ir.r.a
= r • tan a — 0.5

360°
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We will use the value of r we found above: r = 6,366,198 meters.
Comparison of values

2,r. r ' a (number of places in
a b 3600 b = r. tan a — 0.5 agreement—bold)

300 3,333,333.478 3,675,525.629 1

10° 1,111,111.159 1,122,531.971 2

5° 555,555.5796 556,969.6547 2

1° 111,111.1159 111,121.8994 4
0.30 33,333.33478 33,333.13940 5

0.4° 44,444.44637 44,444.66844 5
0.350 38,888.89057 38,888.87430 6
0.3550 39,444.44615 39,444.45091 6

More exactly

0.353° 39,222.22392 39,222.22019 7

0.354° 39,333.33504 39,333.33554 8

0.3545° 39,388.89059 39,388.89322 7

0.355° 39,444.44615 39,444.45091 6

Our various trials would indicate that our closest match of the
two values occurs at a 0.3540.

For this value of a, y = r • tan a (6,366,198) (0.006178544171)

39,333.83554 meters, or about 39,334 meters.

The rope is therefore almost 40 kilometers long before it
reaches its peak. But how high off the earth's surface is the rope?
That is, what is the length of x?

Applying the Pythagorean theorem to AMST, we get MT2 = r2 + y2.

MT2 = (6,366,198)2 + (39,334)2 = 40,528,476,975,204 +
1,547,163,556 = 40,530,024,138,760

So 6,366,319.5 12 m

We are looking for x, which is MT — r 121.5 120192 m, or
about 122 meters.

This result is perhaps astonishing because one intuitively
assumes that by the circumference of the earth (40,000 km), an
extra meter must almost disappear. But this is the mistake! The
larger the sphere, the farther the rope can be pulled away form it.
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Looking at the extreme case, where the radius of the equator
decreases to zero, we have the minimum value for x, namely,
x = 0.5 meter.

Thus, we have seen that it can also play a role in "fooling" us,
or teasing our intuition. What this tells us is that the ratio of a
circle's circumference to its diameter is a very special number in
mathematics. So from now on, you should never take that number,
called it, for granted. It should have earned a place in your mathe-
matical mind as a very special number to behold.





Epilogue

By now you can confidently say that you know what it is. It emanated
from the constant ratio of the circumference of a circle to its diam-
eter. The four thousand years of struggles by the world's greatest
mathematicians to establish its exact value have resulted in a mere
approximation of its value, which at the time of publication is an
accuracy to 1.24 trillion decimal places. Despite not establishing its
exact decimal equivalent, we are able to use the concept in a plethora
of applications, some of which we presented in this book. The con-
cept of it also provided us with curiosities and other forms of mathe-
matical entertainment that should serve as motivation for the reader
to seek out further properties of this ubiquitous number it.

Now that we have considered many aspects of this most notable
number, it is appropriate to actually see it a bit better than before. So
here is it to one hundred thousand decimal places. Enjoy!

245
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ir=3. 141592653589793238462643383279502884 197169399375105820974944592307816406286

20899862803482534211706798214808651 32823066470938446095505822317253594081284811

17450284102701938521 1055596446229489549303819644288109756659334461284756482337

8678316527120190914564856692346034861045432664821 33936072602491412737245870066

06315588174881520920962829254091715364367892590360011 3305305488204665213841469

519415116094330572703657595919530921861173819326117931051 1854807446237996274956

7351885752724891227938183011949129833673362440656643086021 39494639522473719070

21798609437027705392171762931767523846748184676694051 3200056812714526356082778

577134275778960917363717872146844090122495343014654958537 105079227968925892354

201995611212902196086403441815981 3629774771309960518707211349999998372978049951

059731732816096318595024459455346908302642522308253344685035261931 188171010003

137838752886587533208381420617177669147303598253490428755468731 159562863882353

787593751957781857780532171226806613001927876611 1959092164201989380952572010654

8586327886593615338182796823030195203530185296899577362259941 38912497217752834

79131515574857242454150695950829533116861727855889075098381 7546374649393192550

6040092770167113900984882401285836160356370766010471018 19429555961989467678374

4944825537977472684710404753464620804668425906949129331 36770289891521047521620

5696602405803815019351 12533824300355876402474964732639141992726042699227967823

547816360093417216412199245863150302861 829745557067498385054945885869269956909

27210797509302955321165344987202755960236480665499119881 83479775356636980742654

252786255181841757467289097777279380008164706001614524919217321 721477235014144

1973568548161361 15735255213347574184946843852332390739414333454776241686251898

3569485562099219222184272550254256887671790494601 65346680498862723279178608578

43838279679766814541009538837863609506800642251252051 1739298489608412848862694

560424196528502221066118630674427862203919494504712371 378696095636437191728746

7764657573962413890865832645995813390478027590099465764078951 26946839835259570

98258226205224894077267194782684826014769909026401 3639443745530506820349625245

174939965143142980919065925093722169646151570985838741 059788595977297549893016

1753928468138268683868942774155991855925245953959431 04997252468084598727364469

584865383673622262609912460805124388439045124413654976278079771 569143599770012

961608944169486855584840635342207222582848864815845602850601 684273945226746767

88952521385225499546667278239864565961 16354886230577456498035593634568174324112

515076069479451096596094025228879710893145669136867228748940560 101503308617928

680920874760917824938589009714909675985261365549781893129784821 682998948722658

804857564014270477555132379641451523746234364542858444795265867821051 141354735

7395231134271661021359695362314429524849371871 101457654035902799344037420073105

78539062198387447808478489683321445713868751943506430218453191 0484810053706146

80674919278191 1979399520614196634287544406437451237181921799983910159195618146

75142691239748940907186494231961567945208095146550225231603881 9301420937621378

55956638937787083039069792077346722182562599661501421 5030680384477345492026054

146659252014974428507325 1866600213243408819071048633173464965 14539057962685610

05508106658796998163574736384052571459102897064140110971 2062804390397595156771

577004203378699360072305587631763594218731251471205329281918261 861258673215791

9841484882916447060957527069572209175671 16722910981690915280173506712748583222

871835209353965725121083579151369882091444210067510334671 1031412671113699086585

1639831501970165151 16851714376576183515565088490998985998238734552833163550764
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791853589322618548963213293308985706420467525907091548141654985946163718027098

19943099244889575712828905923233260972997 1208443357326548938239119325974636673

058360414281388303203824903758985243744170291 327656180937734440307074692112019

13020330380197621101 10044929321516084244485963766983895228684783123552658213144

957685726243344189303968642624341077322697802807318915441 101044682325271620105

2652272111660396665573092547110557853763466820653 109896526918620564769312570586

3566201855810072936065987648611791045334885034611 365768675324944166803962657978

7718556084552965412665408530614344431858676975 14566140680070023787765913440171

274947042056223053899456131407112700040785473326993908 145466464588079727082668

30634328587856983052358089330657574067954571637752542021 1495576158140025012622

85941302164715509792592309907965473761255176567513575 1782966645477917450112996

1489030463994713296210734043751895735961458901938971311 179042978285647503203198

691514028708085990480109412147221317947647772622414254854540332 157185306142288

137585043063321751829798662237172159160771 669254748738986654949450114654062843

366393790039769265672146385306736096571209180763832716641 627488880078692560290

22847210403172118608204190004229661711963779213375751 14959501566049631862947265

473642523081770367515906735023507283540567040386743513622224771 589150495309844

489333096340878076932599397805419341447377441842631 298608099888687413260472156

9516239658645730216315981931951673538129741 67729478672422924654366800980676928

238280689964004824354037014163 149658979409243237896907069779422362508221688957

383798623001593776471651228935786015881617557829735233446042815 126272037343146

53197777416031990665541876397929334419521541341 8994854447345673831624993419131

814809277771038638773431772075456545322077709212019051 660962804909263601975988

2816133231666365286 19326686336062735676303544776280350450777235547105859548702

790814356240145171806246436267945612753181 340783303362542327839449753824372058

35311477119926063813346776879695970309833913077 10987040859133746414428227726346

5947047458784778720192771528073176790770715721 34447306057007334924369311383504

93163128404251219256517980694113528013 14701304781643788518529092854520116583934

196562134914341 595625865865570552690496520985803385072242648293972858478316305

777756068887644624824685792603953527734803048029005876075825 104747091643961362

6760449256274204208320856611906254543372131 53595845068772460290161876679524061

634252257719542916299 193064553779914037340432875262888963995879475729174642635

7455254079091451357111369410911939325191076020825202618798531 887705842972591677

81314969900901921169717372784768472686084900337702424291651 3005005168323364350

38951702989392233451722013812806965011784408745196012122859937 16231301711444846

4090389064495444006198690754851602632750529834918740786680881 83385102283345085

048608250393021332197155184306354550076682829493041 377655279397517546139539846

83393638304746119966538581538420568533862186725233402830871 12328278921250771262

94632295639898989358211674562701021835646220134967151 88190973038119800497340723

9610368540664319395097901 90699639552453005450580685501956730229219139339185680

34490398205955100226353536192041 9947455385938102343955449597783779023742161727

111723643435439478221818528624085140066604433258885698670543 1547069657474585503

323233421073015459405165537906866273337995851 156257843229882737231989875714159

5781119635833005940873068 121602876496286744604774649159950549737425626901049037

7819868359381465741 26804925648798556145372347867330390468838343634655379498641

9270563872931748723320837601123029911 367938627089438799362016295154133714248928
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307220126901475466847653576164773794675200490757155527819653621 323926406160136

35815590742202020318727760527721900556148425551879253034351 3984425322341576233

61064250639049750086562710953591946589751413 1034822769306247435363256916078154

78181152843667957061108615331504452127473924544945423682886061 34084148637767009

6120715124914043027253860764823634143346235189757664521641 37679690314950191085

759844239198629164219399490723623464684411739403265918404437805 133389452574239

9508296591228508555821572503107125701266830240292952522011 87267675622041542051

618416348475651699981 161410100299607838690929160302884002691041407928862150784

24516709087000699282120660418371806535567252532567532861291 0424877618258297651

57959847035622262934860034 1587229805349896502262917487882027342092222453398562

647669149055628425039127577102840279980663658254889264880254566 101729670266407

655904290994568150652653053718294127033693137851786090407086671 149655834343476

9338578171 13864558736781230145876871266034891390956200993936103102916161528813

84379099042317473363948045759314931405297634757481193567091 10137751721008031559

02485309066920376719220332290943346768514221447737939375 17034436619910403375111

735471918550464490263655128162288244625759163330391072253837421 821408835086573

917715096828874782656995995744906617583441 375223970968340800535598491754173818

8399944697486762655165827658483588453142775687900290951 70283529716344562129640

43523117600665101241200659755851276178583829204197484423608007 1930457618932349

229279650198751872127267507981255470958904556357921221 033346697499235630254947

8024901141952123828153091 140790738602515227429958180724716259166854513331239480

49470791191532673430282441 8604142636395480004480026704962482017928964766975831

83271314251 7029692348896276684403232609275249603579964692565049368 183609003238

09293459588970695365349406034021 6654437558900456328822505452556405644824651518

75471196218443965825337543885690941 13031509526179378002974120766514793942590298

9695946995565761218656196733786236256125216320862869222 10327488921865436480229

67807057656151446320469279068212073883778 1423356282360896320806822246801224826

1177 1858963814091839036736722208883215 1375560037279839400415297002878307667094

4474560134556417254370906979396122571429894671 54357846878861444581231459357198

492252847160504922124247014121478057345510500801 908699603302763478708108175450

1193071412233908663938339529425786905076431006383519834389341 59613185434754649

556978103829309716465143840700707360411237359984345225 161050702705623526601276

484830840761183013052793205427462865403603674532865 105706587488225698157936789

766974220575059683440869735020141020672358502007245225632651 341055924019027421

62484391403599895353945909440704691209140938700126456001 6237428802109276457931

0657922955249887275846101264836999892256959688159205600101 65525637567856672279

661988578279484885583439751874454551 296563443480396642055798293680435220277098

429423253302257634180703947699415979159453006975214829336655566 156787364005366

6564165473217043903521329543529169414599041608753201 86837937023488868947915107

16378529023452924407736594956305100742108714261349745956151 3849871375704710178

79573104229690666702 1449863746459528082436944578977233004876476524133907592043

401963403911473202338071509522201068256342747164602433544005 152126693249341967

3977041595683753555166730273900749729736354964533288869844061 19649616277344951

8273695588220757355176651589855190986665393549481 06887320685990754079234240230

0925900701731960362254756478940647548346647760411463233905651 34330684495397907

09030234604614709616968868850140834704054607429586991 3829668246818571031887906
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5287036650832431974404771855678934823089431 06828702722809736248093996270607472

6455399253994428081137369433887294063079261 595995462624629707062594845569034711

97299640908941805953439325123623550813494900436427852713831591 2568989295196427

28757394691427253436694153236100453730488198551706594121 7352462589548730167600

29886592578662856124966552353382942878542534048308330701 6537228563559152534784

459818313411290019992059813522051173365856407826484942764411 3763938669248031183

6445369858917544264739988228462184490087776977631 27957226726555625962825427653

18300134070922334365779160128093179401718598599933849235495640057099558561 1349

8025249906698423301735035804408116855265311 709957089942732870925848789443646005

0410892266917835258707859512983441729535 19537885534573742608590290817651557803

90594640873506123226112009373 1080485485263572282576820341605048466277504500312

620080079980492548534694146977516493270950493463938243222718851 597405470214828

97111777923761 22578873477188196825462981268685817050740272550263329044976277894

4236216741191 86269439650671515779586756482399391760426017633870454990176143641

204692182370764887834196896861 181558158736062938603810171215855272668300823834

0465647588040513808016336388742163714064354955618689641 12282140753302655100424

1048967835285882902436709048871 18190909494533144218287661810310073547705498159

680772009474696134360928614849417850171807793068 108546900094458995279424398139

213505586422196483491512639012803832001097738680662877923971 801461343244572640

097374257007359210031541508936793008 169980536520276007277496745840028362405346

037263416554259027601834840306811381855 105979705664007509426087885735796037324

514146786703688098806097164258497595138069309449401515422221 943291302173912538

35591503100333032511 17491569691745027149433151558854039221640972291011290355218

1576282328318234254832611191280092825256190205263016391 147724733148573910777587

442538761174657867116941477642144111126358355387136101 1023267987756410246824032

264834641766369806637857681349204530224081972785647198396308781 543221166912246

415911776732253264335686146186545222681 268872684459684424161078540167681420808

850280054143613146230821025941737562389942075713627516745731891 894562835257044

133543758575342698699472547031656613991999682628247270641336222 178923903176085

42894373393561889165125042440400895271 9837873864805847268954624388234375178852

0143956005710481194988423906061369573423 15590796703461491434478863604103182350

73650277859089757827273130504889398900992391 3503373250855982655867089242612429

4736701939077271307068691709264625484232407485503660801 36046689511840093668609

546325002145852930950000907151058236267293264537382 104938724996699339424685516

483261134146110680267446637334375340764294026682973865220935701 6263846485285149

03629320199199688285171 83953669134522244470804592396602817156551565666111359823

11225062890585491450971575539002439315351909021071 19457300243880176615035270862

6025378817975194780610137150044899172100222013350131060163915415895780371 17792

77522597874289191791552241718958536168059474123419339842021 8745649256443462392

53195313510331147639491 19950728584306583619353693296992898379149419394060857248

6396883690326556436421664425760791471086998431 57337496488352927693282207629472

8238153740996154559879825989109371712621828302584811238901 196822142945766758071

865380650648702613389282299497257453033283896381 843944770779402284359883410035
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Afterword

One of the intriguing aspects of mathematics is the unending rela-
tionships that one finds in what, on the surface, would appear to be
disconnected branches of the subject. From my early days I was
always fascinated with the ubiquity of it. We know from our school
days that it is defined to be the ratio of the circumference of a circle
to its diameter. Yet it seems to pop up almost everywhere in mathe-
matics—even outside of the field of geometry. This lovely book
took you through a very broad spectrum of the history and appear-
ances of it. Implicit in this definition is the assumption that it has
the same value for all circles, whether large or small. This property
of the circle has been known for so long that it appears now to be
all but impossible to give an account of the time, place, and circum-
stance of its discovery.

275



276 it

For me the things that stand out most about it are those that have

shown the true genius of some of our greatest mathematicians.
Specifically, Archimedes (287—212 BCE) and Leonhard Euler
(1707—1783) showed some of their greatest brilliance when it came
to working with it. Earlier in this book you were exposed to their
work. Now, I would like to recap the brilliant insight that these
mathematicians exhibited.

Archimedes' attempt to determine the value of it was based on his

assumption that the circle's circumference lies between the perimeters
of an inscribed and circumscribed regular polygon of the same
number of sides, and, as the number of sides increases without limit,
these perimeters approach arbitrarily close to the circumference. We
start with a circle having unit radius. Hence the circumference is equal

to 2it, and the semicircumference is equal to it. We inscribe in this
circle an equilateral triangle having semiperimeter b1 and circum-
scribe an equilateral triangle having semiperimeter a1 (fig. 1).

Fig. 1

A drcle with unit radius together with inscribed and

circumscribed equilateral triangles



Afterword 277

Clearly b1 and a1 are very crude approximations to it; b1 is less
than it and a1 is greater than it, or in symbols

b1<it<a1 (1)

To get a better approximation to it, we double the number of
sides of the inscribed and circumscribed regular polygons. Thus, we
inscribe in the circle a regular hexagon having semiperimeter b2 and
circumscribe a regular hexagon having semiperimeter a2 (fig. 2). As
before, b2 and a2 are clearly approximations to it, still crude but
better than before; b2 is less than it and a2 is greater than it:

b2<it<a2 (2)

Fig. 2

The drcle with unit radius together with inscribed and

drcumscribed regular hexagons
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Furthermore, as comparison of figures 1 and 2 shows, it is obvious
too that

m>b2>b1 andm<a2<a1 (3)

We continue in this way, as Archimedes did more than two
thousand years ago, doubling the number of sides, called N, in both
inscribed and circumscribed regular polygons until we arrive at N
= 96 (see fig. 3 for the case that N = 12):

N= 3,6, 12,24,48,96

Fig. 3

A circle with unit radius together with inscribed and

drcumscribed dodecagons (12-gons)

(4)

The corresponding semiperimeters b1, b2, ..., b6 of the six
inscribed regular polygons and semiperimeters a1, a2, ..., of the
six circumscribed regular polygons yield better and better approxi-
mations for it, as is already obvious when N = 12 (fig. 3).
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As before

(5)

it>b6>b5>...b1,andit<a6<a5<...<a1 (6)

It is now easily verified that, owing to the successive doubling
of the number of sides in the inscribed and circumscribed regular
polygons, N is given by the simple formula

(7)

sothatwhenn= 1,N=3;whenn=2,N=6; whenn=3,N= 12;
•..; until finally, when n = 6, N = 96.

Next, we refer to Archimedes who showed how to calculate the
values of a pair of remarkable
formulas:

1 i(i 1

—+—
(8)

= (9)

One starts with the values of a1 and b1, readily obtained by ele-
mentary geometry:

a1 = 5.196152 and b1 = 2.598076 (10)

then sets n = 1 in equation (8) to calculate first the value of a2 and

then, using equation (9), again with n = 1, to calculate the value of
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b2. Then, setting n = 2 in equation (8) and using the known values

of a2 and b2, one calculates the value of a3. Setting n = 2 in equa-

tion (9) and using the values of a3 and b2, now known, one then cal-

culates the value of b3, and so on. Archimedes proceeded in this
way to find the values of a1, a2, ..., and b1, b2, ... b6. Although

decimal notation was not known to Archimedes, we may use this
notation to briefly summarize his result:

a6 3.1426 and b6 3.1410, (11)

which yield the value of it correct to two decimal places and,
finally,

(12)

thus arriving at his famous estimate

223 22
(13)

71 7

Now Archimedes stopped at this point probably because the
calculations were becoming too arduous, but there is no need for us
to stop since both the decimal system and hand calculators are now
available. After a brief calculation we find, for example,

(14)

3.1415 9267 3.1415 9265 (15)

which yield the value of it correct to seven decimal places.
Of course, with the availability of high-speed automatic com-

puters nowadays, we can go much further. In particular, we can find
in a matter of seconds the values of a30, a40, b30, b40, and so on, yield-

ing the value of it correct to some thirty decimal places at least.
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We cannot leave the remarkable formulas in equations (8) and
(9) without further comment.

Notice first that as given by equation (8), is the arithmetic mean

of and its value therefore lies between the values of and

Alternatively, is said to be the harmonic mean of and
and, again, its value lies between the values of and Hence,
since with increasing n, and approach closer and closer to it,

from above and from below, we naturally anticipate that
will be closer to it than either or as the geometric interpreta-
tion already suggested.

In a similar way, as given by equation (9), is said to be the
geometric mean of and its value lies between the values of

and and, as before, one naturally anticipates that will

be closer to it than either a or b . Comparison of the known valuen+I n

of it = 3.141592653589793238462643383... with the values of a

and confirms these expectations.

In this connection one should consult figure 4 and observe that

the chord AB is a better approximation to the length of the circular

arc AB than the sum of the lengths of AC and BC; in symbols

mAB-AB<AC+BC-mAB (16)

Replacing AC + BC by CC', we find

mAB-AB<CC'-mAB (17)
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and infer that

it—b <a —it
n n

C

(18)

or that is a better approximator to it than is as is already sug-
gested, for example, by equation (12).

Of course there is nothing sacred about the regular polygons
having sides N = 3, 6, 12, 24 One could just as well start with
the inscribed and circumscribed square, doubling the number of
sides in succession, thus leading to the sequence

N=4,8, 16, 32, 64,

corresponding to

(19)

n=1,2,3,4,... (20)

mAJ3-AB<AC+BC-mAJ3= CC'-mAJ3

Fig. 4
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respectively, so that

(21)

Now denoting by a1 and b1 the semiperimeters of the circum-
scribed and inscribed squares, respectively, one finds

a1 = 4 and b1 2.828427 12 (22)

instead of equation (10).
if one now defines and to be the semiperimeters of the circum-

scribed and inscribed regular polygons having N = sides, respec-

tively, one can still calculate and using the same recursion formula,

equations (8) and (9), as before. Since the starting point, equation (22),

is now different from equation (10), we obtain different sequences

a1, a2, a3, ...; b2, b3,... (23)

which however approach closer and closer to it. The reader may wish
to carry out this calculation remembering now to start with equation
(22) [not equation (10)1 and to use the same recursion formulas,
equations (8) and (9), as before to calculate and when n> 1.

It is impossible to leave Archimedes without at least brief men-
tion of two of his greatest achievements, especially since they pro-
vide our first illustrations of the ubiquitous nature of it. They are

nothing less than his famous formulas expressing the values of the
volume and surface area of a sphere in terms of its radius, formulas
of which Archimedes himself was, for good reason, particularly
proud. If one denotes by V and S the volume and surface area, respec-

tively, of the sphere with radius r, Archimedes found that V = iv r3

and S = 4ir r2, which are easy consequences of Archimedes' analysis
of the sphere and the circumscribed cylinder in which he showed that
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the volume and surface area of the sphere are equal, respectively, to
two-thirds of the volume and surface area (including the bases) of the

circumscribed cylinder. According to the historian Plutarch,
Archimedes himself expressed the wish during his lifetime that there
should be placed on his tomb a sphere together with circumscribed
cylinder and an inscription giving the ratio between the volumes of
these two bodies that he had discovered.

The subject of infinite series has fascinated mathematicians for
centuries. Of particular interest were questions of convergence, and,
when convergent, questions concerned with their sums were para-
mount. It was not until the seventeenth century however that interest in

the summation of infinite series became particularly intense, and,
largely under the influence of the mathematician Jakob Bernoulli, great

progress was made. There was however one particular series the sum-
mation of which presented an insuperable obstacle. This series was
simply the sum of the reciprocals of the squares of all the integers:

1 1 11+—+—+—+... (24)
22 32 42

a series long known to be convergent, but the sum of which, despite
its apparent simplicity, had resisted all attempts at solution. Even
Bernoulli, who had succeeded in summing far more complex
appearing series than this one, finally had to admit defeat, but not
before he had challenged the mathematical community to solve the
so-called Basel problem, the summation of the series (24). The dif-
ficulty of the problem was such, however, that it was not until 1735,
decades after Bernoulli's death, that the young Leonhard Euler, at
the age of twenty-eight, produced the solution:

1 1 11+—+—+—+...=— (25)
4 9 16 6
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Can anything be more beautiful and unexpected? After all, who
would have anticipated that the number it, in view of its definition,
should be so intimately related to the integers?

Euler's solution was a model of simplicity and clarity. He
simply expressed the function in two ways, first as an infinite
series and, second, as an infinite product.

Thus

sinx x2 x4 x6 ( x2 x2 x2
—=i——+———+•••=i II II (26)

x 3! 5! 7! 7r A 4ir A 9ir )

Comparing these two expressions yields, after a straightforward
analysis, the sum in equation (25). Not only did this argument yield
the sum in equation (25) but also a very profound extension that
enabled Euler to sum the reciprocals of the fourth powers, the
reciprocals of the sixth powers, and so on. Thus

1 1 1 it41+—+—+—+...=— (27)34 44 90

1 1 1 it6
1+—+—+—+...=—— (28)

26 36 46 945

and so on. Equations (25)—(28) naturally cause one to wonder why
it, the ratio of the circumference to the diameter of a circle, should
be so unexpectedly related to the even powers of the integers.

Euler's derivation of equations (25)—(28) naturally raised the
question of the summability of the reciprocals of the odd powers of
the integers such as, for example,

1 1 1—+—+—+... (29)
i3

33
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1 1 1

—+—+—+••• (30)
is 35

and so on. Despite the most intense efforts of many mathematicians
since Euler's time to sum these series, none have succeeded. Except
for Roger Apéry's' interesting result that the series (29) represents
an irrational number, virtually nothing is known about the other
series in this family.

It is therefore not only a matter of some surprise but of great
interest that the alternating series of the odd powers of the odd inte-
gers have yielded their secrets. Thus, for example,

111 Jr
1——+———+...=— (31)357 4

1 1 1 Jr3
(32)33 53 73 32

1 1 1 Sir5
(33)35 55 75 1,536

and so on. Each of these sums is seen to be the product of a rational
number and an odd power of it reminiscent of the series (25), (27),
and (28), where the even powers of it were involved. It is aston-
ishing to find that it is so simply related in some mysterious way to
the integers.

As you saw in this book, there are many curiosities attached to it,
each fascinating in its own way. Consider the following: a number is
said to be square-free if none of its divisors other than unity is a per-
fect square. For example, the number 15 is square-free since its only
divisors greater than unity are 3, 5, and 15, none of which is a perfect

1. Roger Apéry was a French mathematician (1916-1994).
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square. The number 45 on the other hand is not square-free since it is

divisible by 9 = 32, a perfect square.

What is the probability that a number chosen at random be
square-free? Would you believe that the answer is 0.6079? If
you have difficulty accepting this, I would suggest that you put it to
the test. Choose one hundred numbers at random and count the
number of them, say m, which are square-free. Is the ratio
approximately equal to 0.6079?

Better still, count all the numbers less than or equal to 100 that
are square-free. Do you get 61? Is not the ratio = 0.61 approxi-
mately equal to = 0.6079?

Alternatively, setting 0.61, one finds

not a bad approximation to it, obtained purely experimentally.
Of course, to choose all numbers less than 100 is not the same

thing as choosing one hundred numbers at random. Hence, strictly
speaking, further justification is needed to validate this procedure,
which is beyond the scope of this afterword.

If you are not happy with the rather crude approximation to it
obtained with a sample of one hundred, you are free to do the same
experiment with a larger sample size, say, one thousand numbers.
Is this a good way to estimate the value of it?

Another curiosity, again far afield from the foundation of the
concept of it, geometry, is one involving relatively prime numbers.
Two numbers are said to be relatively prime if they have no
common divisor other than unity. For example, the numbers 10 and
21 are relatively prime since they have no common divisor greater
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than one. The pair of numbers 15 and 24, on the other hand, are not
relatively prime since 3 divides both of them.

What is the probability that two numbers, p and q, chosen at
random be relatively prime? Incredibly, the answer is, once again,

As in the previous section, this result may be used to estimate
the value of it experimentally. Convince yourself!

These curiosities provide further convincing evidence that the
number it occurs frequently, in many diverse contexts. We have seen
it appear as the ratio of the circumference of a circle to its diameter
(by definition); in formulas that measure the volume and surface
area of a sphere; as the sum, in many ways, of infinite series; and,
finally, as a measure of probabilities. Can one hope to find more
compelling examples that demonstrate the central importance of the
number it as well as the interrelatedness of all of mathematics?

I must admit it was my pleasure to be asked to write this after-
word since it again brought me into discussions on mathematics
with Dr. Alfred S. Posamentier. Gradually, my enthusiasm for a
fresh look at it grew. I revisited Archimedes' work and this time dis-
covered things I hadn't seen before—resulting in even greater
amazement at this brilliant mathematician. With the supercomputer
I was able to dabble into areas not conceivable in my youth. For
example, I discovered this absolutely gorgeous gem, which I cannot
resist in sharing with the readership:

1 1 1 19.2,6591__+___+...= Jr311 511 711 210.34.52.7

Who knows where this ubiquitous number will come up next?
There were even times during my Nobel Prize—winning research2
in crystallography that it would often appear. This delightful book
guided you through a clear discussion of what it actually represents,

2. Dr Hauptman won the Nobel Prize for Chemistry in 1985, and was lauded as the first math-
ematician to win a Nobel Pnze.
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where it appears, how it can be used, its many curious properties,
and the history that led us to its known value today. Just as I hadn't
taken a new look at it until I was asked to write this afterword—
only to become further enchanted with this incredible number—
this book gave you, as well, the opportunity to revisit some elemen-
tary mathematics with the entertainment provided by this fasci-
nating number called it. I suspect your amazement grew with each
section of the book.

Dr. Herbert A. Hauptman
April 2004

Nobel Laureate (Chemistry 1985)
President of the

Hauptman-Woodward Medical Research Institute
Buffalo, New York
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Appendix A

A Three-Dimensional. Exampl.e of

a Rectilinear Equival.ent to a

Circul.ar Measurement

When it comes to circle measurements, it always plays an
important role. It rarely, if ever, plays a role in the measurement of
a rectilinear figure (one comprised of straight lines). Consequently,
it is rare that the measurement of a circular figure is exactly equal
to that of a rectilinear figure (an exception in the plane can be found
on p. 46). We shall now show an example in three dimensions, in
which a circular and a rectilinear figure are equal in volume.

A famous theorem in geometry was developed by the Italian
mathematician (Francesco) Bonaventura Cavalien (1 598_1647)1 and

is known today as Cavalieri's principle. It states that "two solid figures

are equal in volume if a randomly selected plane cuts both figures in
equal areas." The well-known mathematics historian Howard Eves
developed a clever proof that "there exists a tetrahedron which has the

same volume as a given sphere," or, as he says, where the two solids
1. A student of Galileo.
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are "Cavalieri congruent." For this effort, he won the 1992 George
Polya Award.2 The beauty of this discovery is the profoundness of the

statement and the relative simplicity of the proof—it is a result that,
as the award statement says, would have had "geometers of ancient
times inscribe it on their tombstones."

Let us now look at this clever proof. Notice the unusual role
that it plays in the proof.

We begin with a sphere and two parallel planes, tangent at each
of its "north and south" poles. Next we draw two line segments,
AB and CD, of length in each of the planes, respectively,
but in such a way that they are oriented in perpendicular directions
and that the line joining their midpoints is a common perpendicular.
We now join the endpoints of these two segments to form the tetra-
hedron ABCD.

We now pass two more planes parallel to the first two: one
through the center of the sphere and one x units above it. The
former plane cuts the tetrahedron in a square whose side has length

The reason for this is that the segment EF is one joining the

2 Howard Eves, "Two surpnsing Theorems on Cavalien Congruences," College Mathematics

Journal 22, no. 2 (March 1991): I 23—24.

Fig. A-i
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midpoints of two sides of a triangle and is therefore half the length
of the third side. The plane x units above the plane through the
center of the sphere and parallel to it will cut the tetrahedron in a
rectangle with sides of length u and v ( KT and KL).

The circle on which the noncenter plane cuts the sphere has a
radius of — x2 (Pythagorean theorem), and thus has an area of
m(r2_x2).

Let's now look at similar triangles KTC and EGG. Their ratio of
similitude is determined by the placement of parallel planes sepa-
rated at distances r and x.

NQ r+x . KT
That is, = ,which equals

NP r EG

r+x U
sothat =___7=3 (1)

r

Similarly, the ratio of similitude of triangles AKL and AEF is
r X

KL r—x v r—x
so that = , or = . (2)

EF r r

Multiplying equations (1) and (2) we get

= (r + x)(r — x)
or the area of the rectangle LSTK is

uv = it(r + x)(r — x) = it(r2 — x2), which is the area of the circle.

Thus the area of circle H and the area of rectangle LSTK are equal.

So by Cavalieri's theorem, the two volumes must be the same.
3. The p'ane passing through the center of the sphere bisects all the line segments joining

points on the two "polar" planes Therefore, MP = NP
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Ramanujan's Work

In this connection it may be interesting to note the following simple

geometrical constructions for it. The first merely gives the ordinary

value The second gives the value [92 mentioned on page 114.

(1) Let AB (fig. B-i) be a diameter of a circle whose center is 0.

BisectAO at M and trisectOB at T.

Draw TP perpendicular to AB and meeting the circumference at P.

Draw a chord BQ equal to PT and join AQ.

Draw OS and TR parallel to BQ and meeting AQ at S and R,

respectively.

Onginally published as 5nnivasa Ramanujan, "Modular Equations and Approximations to it,"
Quarterly Journal of Mathematics 45 (1914): 350—72. Reprinted in S. Ramanujan: Collected Papers,
ed G. H. Hardy, P. V. Seshuaigar, and B. M. Wilson (New York: Chelsea, 1962), pp. 22—39
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Draw a chord AD equal to AS and a tangent AC equal to RS.

Join BC, BD, and CD; cut off BE equal to BM, and draw EX,

parallel to CD, meeting BC at X.

Then the square on BX is very nearly equal to the area of the

circle, the error being less than a tenth of an inch when the diam-

eter is 40 miles long.

(2) Let AB (fig. B-2) be a diameter of a circle whose center is 0.

Bisect the arc ACB at C and trisectAO at T.

Join BC and cut off from it CM and MN equal to AT.

Join AM and AN and cut off from the latter AP equal to AM.

Through P draw PQ parallel to MNand meeting AMat Q.

Join OQ and through T draw TR, parallel to OQ, and meeting

AQatR.

Draw AS perpendicular to AO and equal to AR, and join 05.

Fig. B-i
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Then the mean proportional between OS and OB will be very
nearly equal to a sixth of the circumference, the error being less than
a twelfth of an inch when the diameter is eight thousand miles long.

Fig. 8-2
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Proof That > iCe

From page 146 we provide for the mathematics enthusiast some
proofs of the fact that > lte.

Proof I

y =f(x) = ex is monotonously growing in R (R is the set of real
numbers)

x1 <x2 <f(x2)
Supposed we know: e • mm <it, then we can conclude:
e•lnm<m
f(e.lnm)<f(m)

)e

301
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Proof II

y=f(x)= xx =

——2y'=f'(x)=xx .(11r14

y'=O

——3

f'(e) = — ee — 0.07 19... <0 maximum at x = e

max(e; (2.72; 1.44)

3

Fig. C-i

maximum at x = e f(e) >f(m)

ee > (to the power of e, to the power of it) > The
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Proof III

lny=lnxx

lny=—lnx

y' 1—lnx
—= 2 =
y x

y'=O: Left side=0

Right side = 0 (numerator) 1 — in x = 0

in x = 1, therefore, x = e

y"(e) <0 maximum at x = e

and so on as in proof II
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Proof IV

x2 x3Forx>O,ex=1+x+_+_+...,i.e.,ex>1,ex>1+x
2! 3!

m > e > 1 and x = — 1 >0; therefore, > 1+ — 1)

Jr Jr1+x=1+(— —1)= —
e e

Jr> —, then multiply by e to get
e e

>ii;

elt > The
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A Rope
around the

Regular Polygons

We provide here the calculations that enabled us to get the various
values for a for each of the regular polygons.

For an equilateral triangle:

305

s + 2b

Fig. D-1
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The length of the rope is 3s + 1. The perimeter of the larger tri-
angle is 3(s + 2b) = 3s + 6b.

With 3s + l=3s + 6b, it follows immediately that 1= 6b and

We know that tan 600 (or tan = so we get

a = = = = 0.09622504486 ... 0.096, or the length

of a is about 9.6 cm.

For a regular pentagon:

Fig. D-2

The length of the rope is 5s + 1.

The perimeter of the larger regular pentagon is 5(s + 2b) = 5s + I Ob.

With 5s+ I =5s+ lOb, itfollows that 1 = lOb andb=
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tan 36°(ortan we get

a= —p-— =
tan6O 250 100

that the distance between the pentagons, a, is about 13.8 cm.

For a regular hexagon:

S + 2b

Fig. D-3

The length of the rope is 6s + 1.

The perimeter of the larger regular pentagon is 6(s + 2b) = 6s + 1 2b.

With 6s + 1 = 6s + l2b, it follows that

1 = I 2b and b = Since tan 30° (or tan = we get

a= = = =0.1443375672...
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which indicates that the distance, a, between the hexagons is about
14.4 cm.

The distance a between the respective parallel sides of the rope
and initial polygons is also shown by these four regular polygons to
be independent of the side lengths of the initial polygons.

For a regular polygon of n sides (called an n-gon:)
The length of the rope is ns + 1.
The perimeter of the larger regular polygon is n(s + 2b) = ns + 2nb.

With ns + 1 = ns + 2nb it follows that 1 = 2nb and b = -'-.
b 2n

Because tan = —, we get

b 1 iva= = ,ora= cot—
Jr it ntan— 2ntan—
n n 2n
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See also polygon
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See also polygon
355/133 as approximation of it,

138,149
360 degrees in a circle, 137—38
666 and it, 152—54

768 and it, 155—56

accuracy of it calculations, 99n 13
See also value of it
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algorithms, 74, 115
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Apéry, Roger, 286, 286n1
Apollonius of Perge, 56
apothem, 80

defined, 80n1
apple, circumference of, 226—27
applications of it, 11, 157—2 16
approximate value of it, 66n28, 114,

115n22, 142—45, 149

See also value of it
Arabic numerals, lOni
arbelos, 206n13, 211—13, 215

Archimedes of Syracuse, 23—24, 58,
59, 75, 149, 211—15, 283—84, 288

method of determining value of it,
52—56, 80—91, 99, 276—80

arcs inside a square, 218
area ofa circle, 17—19,51

ratios, 179n9

and right triangles, 52—53

and squares, 53—54

See also itr2

area of a sphere, 283—84
area of a square, 19
area of irregular shape, 186-89

yin-yang, 194
area of ring within circle, 204—206
Aristotle, 24, 69
Arithmetica infinitorum (Wallis), 24,

64—65

arithmetic series, 68n3 1
Arybhata, 75
Automatic Sequence Controlled

Calculator, 85—86n3

Babbage, Charles, 85—86n3
Babylonia, 44n6
Babylonians and it, 44, 75
Bailey, David H., 77
Baker, H. F., 113

base e and natural logarithms, 30, 68,
68n33, 146

Basel problem, 284
Bernoulli, Jakob, 31, 284
Bernoulli, Johann, 31
Bible, 10, 149, 153

value of it, 27, 45, 60, 75

Big Dipper, 190—91

Blaschke, Wilhelm, 165
Bottomley, 5., 123
Bouyer, Martine, 72, 76
Brahmagupta, 75
breadth

of circle, 159n1
of Releaux triangle, 159—68

Brouncker, William, 65, 65n26
Buffon, Georges Louis Leclerc

Comte de, 38
Buffon needle problem, 38—39,

70—7 1, 137

as example of Monte-Carlo
method, 105

Bulgarian mnemonics for remem-
bering it, 123

Cajori, Florian, 29
calculating value of it. See history of

it; value of ic
calculator, mechanical, 85—86n3, 280
calipers, 162

defined, 162n2

Castellanos, Dario, 142n*, 152,
152n15, 153—54

Catherine the Great, 31
Cavalieri, (Francesco) Bonaventura, 293

Cavalieri congruent, 294
Ceulen, Ludolph van. See van

Ceulen, Ludolph
Chartres, R., 70—7 1
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China and it, 61, 75
ChiShona mnemonics for remem-

bering it, 123
chord, 204, 206, 281, 297—99
Chudnovsky, David V., 72, 73, 77, 115
Chudnovsky, Gregory V., 72, 73, 77, 115

circle, squaring the. See squaring
the circle

circles, 11, 17, 137—38, 157,
222nn3—4

arcs inside a square, 18 1—86, 218
area of, 52—55

area within a ring, 204—206
breadth of, 159—68

circumference vs. height. See
spheres

concentric, 198—99, 220—22,

222—29, 237—43

congruent, 175—78, 217—18

inscribing and circumscribing a
polygon, 91—98

and parallel pieces, 202—203
ratio of circumference to diameter,

10, 54—55, 220—22, 245, 275

ratios of area, 179n9
seven-circles arrangement, 175—77
trisecting of, 197—203
unusual relationships, 211—15
See also circumference of a circle;

quarter circles; semicircles
circumference of a circle, 13, 17, 80

and diameter, 17n3, 54, 220—22,
245, 275. See also 2itr

vs. height of a cylinder. See spheres
it established as a constant, 51
See also circles; value of it

circumference of spheroids, 222—29
Claudius Ptolemaeus, 59—60
Clausen, Thomas, 70

coincidences and it, 142—46
Columbian Exposition (Chicago,

1893), 37
complex numbers, 68
computers, 10, 11, 116

supercomputer and value of it, 21
concentric circles, 198—200, 220—22,

222—29

congruent, Cavalieri, 294
congruent circles, 175—78, 217—18
Conon of Samos, 52
constant ring, 204—206
constants, 104n14

circumference to diameter of a
circle, 10, 54—55, 220—22, 245, 275

itasa, 10, 51, 51n12
construction of a cube, 42n2
continued fractions, 11, 65,

65nn25—26, 146—52, 150n11

convergents, 64—66, 110, 147—48,

147n9, 149, 150, 284
defined, 64n24, 110n18

converging series, 64n21
Conway, John, 22—23
counting lattice points to determine it,

101—103

counting squares to determine it,
99—101

cube, construction of, 42n2
cubit, 27n14
curiosities about it, 137—56
Cusanus, 91—98
cylinder

height vs. circumference, 26
rolling, 218—20

and sphere, 57—59

da Architectura (Vitruvius), 59
Dahse, Zacharias, 69
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dartboard algorithm, 105—108
Dase, Johann. See Dahse, Zacharias
dates found in it, 133
decimal, periodic, 22, 22n4,

65n27, 142n6
decimal numbering system, 60n17,

280
De Lagny, Thomas Fantet, 76
denominator, rationalizing, 95n10
diameter of a circle, 221n2

and circumference, 17, 17n3, 54,
220—22, 245, 275

Dichampt, Michele, 72, 76
digits

frequency of digits in it, 129—31
repetition of digits in it, 132

distribution of digits in it, 129—3 1
divisors, prime, 23, 23n6, 139
dodecagon, 54, 91

See also polygon
dolphin shape, 186—89
Dudeney, Henry Ernest, 223—24
Dürer, Albrecht, 63
Dutch mnemonics for remembering

it, 123

e (base of natural logarithms). See base
e and natural logarithms

e't, 146, 301—304

em = -1, 30, 68, 68n34
earth

railway track around the equator,
236—38

rope around the equator, 222—29,
240—43

walk around the equator, 238—39
Egypt, ancient and it, 42—44, 75
Einstein, Albert, 14, 118, 120, 140
Elements (Euclid), 50—51

Elements de Géométrie (Legendre), 69
Elijah of Vilna, 27—28

Energon (Ulm, Germany), 169
English mnemonics for remembering

it, 122—23, 124
ENIAC computer, 72, 76
equals sign, first used, 43n5
equator

railway track around, 236—38
rope around, 222—29, 240—43

walk around, 238—39
equilateral triangles, 231

rope around, 305—306
Eratosthenes of Cyrene, 52
"Essai d'arithmétique morale"

(Buffon), 38
Euclidean constructions, 25n1 1
Euclid of Alexandria, 50—51
Euler, Leonhard, 25, 25n10, 29,

30—33, 67—68, 111n19, 151—52,

276, 284—86

Euler series, used in calculation of it,
110—12

Eves, Howard, 123, 293
Exploratorium (San Francisco),

118—20

extreme values, 227

fallacies in geometry, 34—36
Felton, G. E., 72, 76
Ferguson, D. F., 71, 76
Fibonacci, Leonardo Pisano, 1 On 1, 62,

75, 113
Fibonacci numbers, 62n2 1
Filliatre, J., 72, 76
fractional approximations of it

22/7, 9, 20, 138, 149

355/133, 138, 149
See also value of it
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fractions
continued, 11, 65, 65nn25—26,

146—52, 150n11

improper, 146
French mnemonics for remembering

it, 124
frequency of digits in it, 129—31

Gahaliya, 60
Galileo Galilei, 293n1
Gaon of Vilna, 27—28

Gardner, Martin, 122—23
Gauss, Carl Fredrich, 69, 101—103
gematria, 28
Genuys, François, 72, 76
geoid, 224n6
geometry, fallacies, 34—36
German mnemonics for remembering

it, 124—25

Goldbach, Christian, 152n15
Goldbach's conjecture, 73
Golden Ratio, 146

defined, 146n7
Goodwin, Edward Johnson, 36—37
Gosper, William, 77
Goto, Hiroyuki, 128
Greek alphabet, 15—16
Greek mnemonics for remembering it,

125

Greek numbering system, 16, 16n2
Greeks and it, 45—52
Gregory, James, 67
Guilloud, Jean, 72, 76, 77

Hall 31 of Palais de la Decouverte
(Paris), 118

Hardy,G.H., 113, 113n20
harmonic series, 68, 68n31, 151
Heron of Alexandria, 56

hexagon, 44n7
rope around, 233—34, 307—308
See also polygon

hexagonal numbers, 155
defined, 155n20

hidden code in the Bible, 27
Hindu numbering system, 55, 62, 113
Hippocrates of Chios, 45, 51
Hippocrates of Cos, 51
Histoire naturelle (Buffon), 38
history of it, 41—77

and ancient Egypt, 42—44
and Babylonians, 44
and China, 61
computers used, 72—74
and Greece, 45—52
Jewish contributions, 60
during nineteenth century, 69—70
and Old Testament, 45
prehistory, 41—42

and Ptolemy, 59—60
during Renaissance, 62
and Romans, 59
during seventeenth century, 64—67
during sixteenth century, 63
summary of pursuit of value of,

75—77

during the twentieth century, 70—74
See also value of it

Hitachi SR8000 supercomputer, 21
Hobson,E.W., 113
Hon Han Shu, 75

IBM Corporation, 85—86n3
i (imaginary unit of the complex num-

bers square root of-!), 68, 215—16
215—16

imaginary numbers, 215—16
improper fractions, 146
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Indiana House of Representatives, 37
Indiana Senate, 37
Indian Mathematical Society, 112
infinite product, 63

defined, 63n22
infinite series, 284
Information Technology Center

(Tokyo), 21
integers, 284, 285

odd, 286
positive, 70
See also numbers

Introductio in analysin infinitorum
(Euler), 29, 67—68

irrationality of it, 60, 70
irrational number, 24—25, 69, 70n36,

148

defined, 25n7
irregular shapes and it, 178—97,

200—201

Italian mnemonics for remembering it,
126

iteration method of computation,
96—98, 98—99

defined, 96n11

Jeans, James, 123
Jeenel, J., 72, 76
Jewish contributions to it, 60
Jones, William, 29, 67

Kamata, 76
Kanada, Yasumasa, 21, 72, 77, 129—33
Kasner, Edward, 30
Kenko, Takebe, 76
King Solomon's temple, 27, 45
Klein, (Christian) Felix, 68
Kubo, Y., 77

Lambert, Johann Heinrich, 25n8, 148
Laplace, Pierre Simon, 38
lattice points, counting to find value of

it, 101—103

Lazzarini, Mario, 39
Legendre Adrien-Marie, 25, 69
legislating it, 36—37
Leibniz, Gottfried Wilhelm, 67,

67n29, 85—86n3, 108—10

Leibniz series, 109n17
used in calculation of it, 108—109,

110—11

Lesser, Lawrence, 135—36
Liber abaci (Fibonacci), iOn 1, 62, 113
Lindemann, Carl Louis Ferdinand, 25,70

squaring the circle, 43n3
Liu Hui, 61,75
logarithms, natural, 30, 68, 68n33, 146
Loom of God: Mathematical Tapes-

tries at the Edge of Time, The
(Pickover), 146

Los Numeros (Caro), 127
Ludolph's number, 24, 64
lunes, 49—52

defined, 49n10

MacArthur Foundation, 73
Machin, John, 76
magic square, 154

defined, 154n17
Maimon, Moses ben. See Maimonides
Maimonides, 60, 60n1 8
Marcellus (emperor of Rome), 56
March 14 celebration of it, 14, 118—20
Marcus Vitruvius Pollio. See Vitruvius
mathematical function, and symbols

developed by Euler, 30
mathematical symbols. See symbols,

mathematical
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Mathematics and the Imagination
(Kasner and Newman), 30

Matsunaga, 76
meandering rivers, measure of,

139—41

mean proportional theorems, 98n 12
Measurement of the Circle

(Archimedes), 52—54
measuring river length, 139—41
Method of Fluxions (Newton), 38
Métius,Adriaen, 115, 115n22
Metropolis, N. C., 72
Miyoshi, Kazunori, 72, 76
mnemonics for remembering it,

122—28

Möhwald, R., 144
molten sea (King Solomon's temple),

27, 27n13
Monte-Carlo method of determining it,

105—108

mushroom shape, 178—8 1

Nakayama, Kazuhika, 72
natural logarithms, 30, 68, 68n33, 146

and symbols developed by Euler, 30
natural numbers, 121, 132—33, 139, 151

Newman, James, 30
Newton, Isaac, 38, 76, 108
n-gon. See polygon
Nicholas of Cusa. See Cusanus
Nicholson, S. C., 72, 76
nonrectilinear figures. See lunes
number of the beast, 153—54
numbers

complex, 68
hexagonal, 155, 155n20
imaginary, 215—16

irrational, 24—25, 25n7, 69, 70n36,

natural, 121, 132—33, 139, 151

perfect, 155, 155n18
prime, 23, 23n6, 73, 139

rational, 70, 286

real, 215—16

relatively prime, 71, 71n37, 139,

287—88

repeated after decimal. See periodic
decimal

square-free, 286—87
transcendental, 25, 25n9, 25n 10, 70,

70n36
triangular, 155, 155n19
See also integers

number series, 121
Euler series, 110—12

Fibonacci numbers, 62n21
Leibniz series, 108—109, 1 10—11

natural found in it, 132—33
number systems

Arabic, lOnl
decimal, 60n17, 280
Greek, 16, 16n2
Hebrew, 28
Hindu, 55, 62, 113

sexagesimal, 60, 60n17

Old Testament and it, 45
On the Sphere and the Cylinder

(Archimedes), 58
Otho, Valethus, 75
Oughtred, William, 29

Palais de la Decouverte (Paris), 118
paradoxes of it, 34—36, 217—43
"Paradox Party. A discussion of Some

Queer Fallacies and Brain-
Twisters, The" (Dudeney),

148 223—24
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parallel lines dividing a circle,
202—203

parallelogram, 19

defined, 19n4
parallel planes, 294
parallel tangents, 159, 160
Pascal, Blaise, 85—86n3
Pascaline, 85—86n3
Peirce, Benjamin, 30—31
pentagon, rope around, 232, 306—307
perfect number, 155

defined, 155n18
perimeter of irregular shape, 186—88,

194—96

periodic decimal, 22, 22n4, 65n27, 142n6

periphery and it, 29, 67
Phidias, 52
physical properties used to calculate IC,

103—105

Pickover, Clifford A., 146
ite, 146, 301—304
itr2, 13

See also area of a circle
it Song, 135—36
Pisano, Leonardo. See Fibonacci,

Leonardo Pisano
pizza pie divide into 3, 197—203
planes, parallel, 294
Plutarch, 284
Polaris star, 191
Polish mnemonics for remembering it,

126

polygon
defined, 44n7
inscribing and circumscribing a circle,

54—55, 61, 64, 80—91, 276—80

multisided used to calculate it, 62,
63

rope around, 230—36, 305—308

Portuguese mnemonics for remem-
bering it, 126

positive integers, 70-71
Practica geometriae (Fibonacci),

62
prehistory and it, 41—42

prime numbers, 73
as divisors, 23, 23n6, 139
relatively prime numbers, 71,

71n37, 139, 287—88

probability, 10, 38—39, 70—7 1, 288

and it, 139

of repeating digits in value of it,

22
used in calculation of it, 105—108

Proceedings of the St. Petersburg
Academy, 32

product, infinite, 63, 63n22
Prussian Academy, 31
Ptolemy, 59—60, 75

Pythagorean theorem, 45—50, 95, 98,
102, 164n4, 205, 207—208, 242,
295

Pythagorean triple, 153

quadrilateral, 19n4, 218n1
quarter circles, 178—8 1, 218

See also circles; semicircles

race course and it, 170-72
radius of circle, and symbols devel-

oped by Euler, 30
railway track around the equator,

236—38

Ramanujan, Srinivasa, 71, 113n20,
144, 297—99

method of determining value of it,
112—16

Ramanujan's theorem, 112
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ratio
of circumference of circle to diam-

eter. See circumference of a circle
Golden, 146, 146n7

rational coefficients, 25n9, 70n36
rationalizing the denominator, 95n10
rational number, 70, 286
real numbers, 215—16
reciprocals, 111n19, 285—86
Record, Taylor I., 36
Recorde, Robert, 43n5
rectilinear figures, 49, 293—95

defined, 49n9
Reitwiesner, George, 72, 76
relatively prime numbers, 71, 139,

287—88

defined, 71n37
See also circles

Renaissance and it, 62

repeating decimal. See periodic dec-
imal

repetition of digits in it, 132

Reuleaux, Franz, 158
Reuleaux triangle, 11, 158—70, 159n I
Rhind, Alexander Henry, 42n1
Rhind Papyrus, 42—44
rhombus, 218

defined, 218n1
right triangles

and area of circles, 52—53
and semicircles, 49—50
See also Pythagorean theorem; tri-

angles
ring, constant, 204—206
rivers, length of and it, 139—41

Romanian mnemonics for remem-
bering it, 126

Romanus, Adrianus. See Roomen,
Adriaen van

Rome and history of it, 59

Roomen, Adriaen van, 63, 63n23, 75
rope

around a square, 229—31, 232
around equator, 222—29
around other spheroids, 226—29
around polygons, 23 1—36, 305—308

Royal Technical University of Berlin, 158
Russian Academy (St. Petersburg), 31
Rutherford, William, 70, 76

Salmon (Archimedes), 213—15
Schickardt, Wilhelm, 85—86n3
Seki Kowa, Takakazu, 76
semi-annulus, 173
semicircles, 141n5

and Pythagorean theorem, 48—49
and right triangles, 49—50
spiral formed, 172—74
sum of lengths, 34—36
See also circles; quarter circles

Semitic alphabet, 16
series

arithmetic, 68n3 1
converging, 64n24
defined, 151n12
harmonic, 68, 68n31, 151
infinite, 284
summability of, 285—86

Serres, Franzose Olivier de, 104
seven-circles arrangement, 175—77
sexagesimal numbering system, 60,

60n17
Shanks, Daniel, 72, 72n41, 76
Shanks, William, 70, 71, 72n41, 76, 118
shapes using circle arcs, 18 1—86

dolphin shape, 186—89
mushroom shape, 178—81
teardrop shape, 193—96, 200—201
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Sharp, Abraham, 76
shoemaker's knife. See arbelos
Siddhanta, 75
similtude, 179n9
Sindebele mnemonics for remem-

bering it, 126
sine function, 82—83

defined, 82n2
Singmaster, David, 37
Smith, Levi B., 71, 76
solid figures. See three-dimensional figures

Solomon (king), 27, 45
solstice, 191—93

Spanish mnemonics for remembering
it, 127

spheres, 293
in cylinder, 57—59

earth, rope around equator, 222—29,
240—43

and geoids, 224n6
plane passing through, 295n3
railway track around the equator,

236—38

volume and surface area, 283—84
walk around the equator, 238—39

spiral and it, 172—74
sports and it, 170—72
square, 218n1

and area of circles, 53—54
circle arcs inside, 178—86
rope around, 229—3 1, 232

square-free numbers, 286—87
square root

of minus one, 30, 68
of it, 145
of the square root, 71n39
often, 142

squares, counting to find value of it,
99—101

squaring the circle, 25—26, 92, 92n7
and ancient Egypt, 42—43
and Greeks, 45, 49
and Lindemann, (Carl Louis) Ferdi-

nand, 43n3
statistics, used in calculation of it,

105—108

StØlum, Hans-Henrik, 139
Strassnitzky, L. K. Schulz von, 69n35,

76
summability of series, 285—86

(summation sign), 30
summer solstice, 191, 193
Swedish mnemonics for remembering

it, 127
Sylvester, James Joseph, 150n11
symbols, mathematical

developed by Euler, 30
e (base of natural logarithms), 30,

68, 68n33
= sign first used, 43n5
i (imaginary unit of the complex

numbers square root of -1), 30, 68,
215—16

it first used, 29, 43n4
(summation sign), 30

Synopsis palmariorum matheseos
(Jones), 29, 67

Takahashi, 77
Tamura, Yoshiaki, 72, 77
tangent, 87—88, 148

defined, 87n4
tangents, parallel, 159, 160
teardrop shape, 193—96, 200—20 1

tennis ball, circumference of, 226—27
tetrahedron, 293
Théorie analytique des probabilities

(Laplace), 39
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three-dimensional figures, 49
circumference vs. height, 26
cylinder, rolling, 218—20
cylinder and sphere, 57—59
rectilinear equivalent to circular

measurement, 293—95

spheres and geoids, 222—29, 224n6,
237—43, 293, 295n3

used in calculation of it, 104n14
three slices of pizza, 197—203
Tokyo University, 21
track and field meets and it, 170—72
transcendental equation, 203
transcendental number, 25, 25n10, 70

defined, 25n9, 70n36
triangles

area of equilateral triangle, 164, 164n4

equilateral, 231, 305—306
Reuleaux triangle, 11, 158—70, 1 59n1

and symbols developed by Euler, 30
See also Pythagorean theorem; right

triangles
triangular number, 155

defined, 155n19

trisecting an angle, 42n2, 92, 92n8
trisecting of a circle, 197—203

true value of it, 66n28
See also value of it

Tsu Ch'ung Chi, 75, 149

"Ubiquitous it, The" (Castellanos),
152, 152n15

Ukrainian Academy of Sciences, 73
unique prime divisors, 23, 23n6
University of Tokyo, 77
Ushiro, Y., 77

value of it, 20—22, 66n28, 79—116

Archimedes method, 80—91, 276—80

Buffon needle problem, 38—39
counting lattice points, 101—103
counting squares to determine it,

99—10 1

Cusanus method, 91—99
Euler series method of determining,

110—12

evolution of, 23—26
genius method of determining,

112—16, 297—99

geometric constructions, 297—99
Leibniz series method of deter-

mining, 108—109, 110—11

Monte-Carlo method of deter-
mining, 105—108

summary of pursuit of value of, 72,
75—77

using physical properties to calcu-
late, 103—105

See also approximate value of it;
history of it

values, extreme, 227
van Ceulen, Ludolph, 24, 64, 75
Vega, George Freiherr von, 76
Viète, François, 63, 75
Vilna, Elijah of, 27—28, 28n15
Vitruvius, 59, 75
volume of sphere, 283—84
von Neumann, John, 72

Wallis, John, 24, 29, 64, 67, 151n14
Wang Fau, 75

Wankel, Felix, 169

Watt, Henry James, 168

Watt, James, 168n6
Watt Brothers Tools Factories

(Wilmerding, PA), 168
"Whetstone of Witte, The" (Recorde),

43n5
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winter solstice, 191—93 Zimbabwe mnemonics for remem
Wrench, John W., Jr., 71, 72, 76 bering it, 123, 126

Zu Chongzhi, 61
yin and yang, 190—96
Yoshino, S., 77





"In case you thought you had rhaN that you could about the oumber it, thtnk
agaio. this book preseots anecdotes, applications, and updated information chat urn
difficult to find anywhere else. Read this book and enjoy the journey through the
mysteries of rc."

—Alice F. Artzt, Professor of Mathematics tdacation and Director of Undergraduate
and Graduate Secondary Mathematics Education, Queens College of tire City University
of New York

"This is a captivating book for those of us who nostalgically cherish the enhilaration
of challenging mathematical problems in school, but have had too few opportunities
to enjny them since."

—Zeev Dagari. Provost, City College of New York

"The book is filled with the strange and unusual places where n occurs, many every-
day, uovnrathematical places where one would hardly eopect to find this number, The
anecdotes about this uniguely mysterious number are interesting and enjoyable to
pervse. , The history of it and the attnmyts to fully understand what it represents
makes for amusing, interesting, and enjeyable reading.

—Dr. Stephen Krulik, Professor of Mathematics Education. Temple University

'This delightful book reveals an incredibly interesting history of the development of
nor knowledge of this ubiguitoas number in orathevratics. I was amazed at the many
applications in which this famous number is involved. Besides the interesting nature
of this book, it also helps to sharpen mathematical thinking through the many care-
fvlly euplained applications. I recommend this book to anyone who remembers ever
hearing about it!"

—Stanley H. Kaplan, Founder of the Kaplan Tess Preparation and Admission Programs

"Once again, Al Posamentier sets the record straight on a mathematical mystery.
using history and humor to euplaiv the world's fascrnation with it. it: A Biography of
the World's Most Mysterious Number proves why Dr. Posamentfer is one of the City
University of New York's

—Matthew Goldstein, Chancellor of the City University of New York and mathematician

"Al Posamentier has done it again! He and Ingmar Lehrnann have written a book
about mathematics which is informative, engaging, and fun, In middle school, high
school, and college, I routinely worked on egsations that included n and, until I read
this book, I had no clue what it meant or where it came from,"

—Arthur t,evine, President, Teachers Coltege, Columbia University

Prometheus Books
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