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Preface

Surely the title makes it clear that this is a book about =, but you
may be wondering how a book could be written about just one
number. We will hope to convince you throughout this book that &t
is no ordinary number. Rather, it is special and comes up in the
most unexpected places. You will also find how useful this number
is throughout mathematics. We hope to present & to you in a very
“reader-friendly” way—mindful of the beauty that is inherent in the
study of this most important number.

You may remember that in the school curriculum the value that
T took on was either 3.14, 3 % , or 373 . For a student’s purposes, this
was more than adequate. It might have even been easier to simply
use ©t = 3. But what is n?7 What is the real value of n? How do we
determine the value of n? How was it calculated in ancient times?
How can the value be found today using the most modern tech-
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nology? How might ©t be used? These are just some of the questions
that we will explore as you embark on the chapters of this book.

We will begin our introduction of n by telling you what it is and
roughly where it came from. Just as with any biography (and this
book is no exception), we will tell you who named it and why, and
how it grew up to be what it is today. The first chapter tells you
what ©t essentially is and how it achieved its current prominence.

In chapter 2 we will take you through a brief history of the evo-
lution of m. This history goes back about four thousand years. To
understand how old the concept of n is, compare it to our number
system, the place value decimal system, that has only been used in
the Western world for the past 802 years!' We will recall the dis-
covery of the m ratio as a constant and the many efforts to determine
its value. Along the way we will consider such diverse questions as
the value of & as it is mentioned in the Bible and its value in con-
nection with the field of probability. Once the computer enters the
chase for finding the “exact” value of m, the story changes its com-
plexion. Now it is no longer a question of finding the mathematical
solution, but rather how fast and how accurate can the computer be
in giving us an ever-greater accuracy for the value of &.

Now that we have reviewed the history of the development of the
value of m, chapter 3 provides a variety of methods for arriving at its
value. We have chosen a wide variety of methods, some precise,
some experimental, and some just good guessing. They have been
selected so that the average reader can not only understand them but
also independently apply them to generate the value of n. There are
many very sophisticated methods to generate the value of n that are
well beyond the scope of this book. We have the general reader in
mind with the book’s level of difficulty.

1. The first publication in western Europe, where the Arabic numerals appeared, was
Fibonacci’s book Liber abaci in 1202.
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With all this excitement through the ages centered on m, it is no
wonder that it has elicited a cultlike following in pursuit of this eva-
sive number. Chapter 4 centers on activities and findings by math-
ematicians and math hobbyists who have explored the value of &
and related fields in ways that the ancient mathematicians would
never have dreamed of. Furthermore, with the advent of the com-
puter, they have found new avenues to explore. We will look at
some of these here.

As an offshoot of chapter 4, we have a number of curious phe-
nomena that focus on the value and concept of . Chapter 5 exhibits
some of these curiosities. Here we investigate how r relates to other
famous numbers and to other seemingly unrelated concepts such as
continued fractions. Again, we have limited our presentation to
material that would require no more mathematical knowledge than
that of high school mathematics. Not only will you be amused by
some of the w equivalents, but you may even be inspired to develop
your own versions of them.

Chapter 6 is dedicated to applications of n. We begin this chapter
with a discussion of another figure that is very closely related to the
circle but isn’t round. This Reuleaux triangle is truly a fascinating
example of how & just gets around to geometry beyond the circle.
From here we move on to some circle applications. You will see how
T is quite ubiquitous—it always comes up! There are some useful
problem-solving techniques incorporated into this chapter that will
allow you to look at an ordinary situation from a very different point
of view—which may prove quite fruitful.

In our final chapter, we present some astonishing relationships in-
volving = and circles. The situation that we will present regarding a
rope placed around the earth will surely challenge everyone’s intu-
ition. Though a relatively short chapter, it will surely surprise you.

It is our intention to make the general reader aware of the
myriad of topics surrounding m that contribute to making mathe-
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matics beautiful. We have provided a bibliography of this famous
number and many of its escapades through the fields of mathe-
matics. Perhaps you will feel motivated to pursue some of these
aspects of « further, and some of you may even join the ranks of the
n enthusiasts.

Alfred S. Posamentier
and Ingmar Lehmann
April 18, 2004



Chapter 1

What Is =?

Introduction to n

This is a book about the mysterious number we call © (pronounced
“pie,” while in much of Europe it is pronounced “pee’’). What most
people recall about &t is that it was often mentioned in school mathe-
matics. Conversely, one of the first things that comes to mind, when
asked what we learned in mathematics during our school years, is
something about m. We usually remember the popular formulas
attached to =, such as 2nr or 2. (To this day, there are adults who
love to repeat the silly response to nr?: “No, pie are round!”). But do
we remember what these formulas represent or what this thing called
n is? Usually not. Why, then, write a book about n? It just so happens
that there is almost a cultlike following that has arisen over the con-
cept of . Other books have been written about nt. Internet Web sites

13
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report about its “sightings,” clubs meet to discuss its properties, and
even a day on the calendar is set aside to celebrate it, this being
March 14, which coincidentally just happens also to be Albert Ein-
stein’s birthday (in 1879). You may be wondering how March 14 was
selected as m day. For those who remember the common value (3.14)
that & took on in the schools, the answer will become obvious.!

It surely comes as no surprise that the symbol & is merely a letter
in the Greek alphabet. While there is nothing special about this par-
ticular letter in the Greek alphabet, it was chosen, for reasons that
we will explore later, to represent a ratio that harbors curious
intrigue and stories of all kinds. It found its way from a member of
the Greek alphabet to represent a most important geometric constant
and subsequently has unexpectedly appeared in a variety of other
areas of mathematics. It has puzzled generations of mathematicians
who have been challenged to define it, determine its value, and
explain the many related areas in which it sometimes astoundingly
appears. Ubiquitous numbers, such as m, make mathematics the
interesting and beautiful subject that many find it to be. It is our
intent to demonstrate this beauty through an acquaintance with .

Aspects of

Our aim here is not to decipher numerous complicated equations, to
solve difficult problems, or to try to explain the unexplainable.
Rather, it is to explore the beauty and even playfulness of this
famous number, &, and to show why it has inspired centuries of
mathematicians and math enthusiasts to further pursue and investi-
gate its related concepts. We will see how n takes on unexpected
roles, comes up in the most unexpected places, and provides the

1. In the United States we write the date as 3/14.
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never-ending challenge to computer specialists of finding ever-
more-accurate decimal approximations for the value of n. Attempts
at getting further accuracy of the value of © may at first seem sense-
less. But allow yourselves to be open to the challenges that have
intrigued generations of enthusiasts.

The theme of this book is understanding © and some of its most
beautiful aspects. So we should begin our discussion and explo-
ration of «t by defining it. While for some people & is nothing more
than a touch of the button on a calculator, where then a particular
number appears on the readout, for others this number holds an
unimaginable fascination. Depending on size of the calculator’s
display, the number shown will be

3.1415927,

3.141592654,

3.14159265359,
3.1415926535897932384626433832795, or even longer.

This push of a button still doesn’t tell us what m actually is. We merely
have a slick way of getting the decimal value of n. Perhaps this is all
students need to know about &: that it represents a specific number that
might be useful to know. However, here students would be making a
colossal mistake to dismiss the importance of the topic, by just
focusing on the application of & in particular formulas and getting its
value automatically just by the push of a button.

The Symbol =

The symbol rt is the sixteenth letter of the Greek alphabet, yet it has
gained fame because of its designation in mathematics. In the
Hebrew and the Greek languages of antiquity, there were no numer-
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ical symbols. Hence, the letters of the respective alphabets served
as numerical symbols. Since the Greek alphabet had only twenty-
four letters, though twenty-seven were needed, they used three let-
ters of Semitic origin, namely, f [digamma] (for 6), @ [qoph] (for
90), and ?, [san] (for 900).

The Greeks at the beginning of the fifth century BCE then used
the notation represented in the following table:?

P o K v ¢ P4 v &
100 200 300 400 500 600 700 800 900

,a B Y O (e F ,C N ,0
1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

Thus in the old Greek texts m was used to represent the number 80.
By coincidence, the Hebrew letter ® (pe) has the same value.

Recollections of «

Perhaps by coincidence or by some very loose associations, the letter
T was later chosen by mathematicians to represent a very important
constant value related to the circle. Remember, the circle is the most
symmetric plane geometric figure and one that goes back in history
to prehistoric times. Specifically, n was chosen to represent the ratio

2. A comma at the left indicates thousands. The ten thousands are indicated with an
M below the number symbol. Table from Georges Ifrah, Universal History of Numerals
(New York: Campus, 1986), p. 289.
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of the circumference of a circle to its diameter.> This would be
expressed symbolically as n = %, where C represents the length of
the circumference and d represents the length of the diameter. The
diameter of a circle is twice the length of the radius, d = 2r, where r
is the length of the radius. If we substitute 2r for d, we get n = %
which leads us to the famous formula for the circumference of a
circle: C = 2nr, an alternative of which is C = nd.

The other familiar formula containing & is that the area of a circle
is 2. This formula is more complicated to establish than that for the
circumference of the circle, which followed directly from the defini-
tion of m.

Formula for the Area of a Circle

Let’s consider a relatively simple “derivation” for the formula (A =
nr?) for the area of a circle with radius r. We begin by drawing a
convenient-size circle on a piece of cardboard. Divide the circle
(which consists of 360°) into sixteen equal arcs. This may be done
by marking off consecutive arcs of 22.5° or by consecutively
dividing the circle into two parts, then four parts, then bisecting
each of these quarter arcs, and so on.

3. A purist might ask: how do we know that this ratio is the same for all circles? We
will assume this constancy for now.
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Fig. 1-1

The sixteen sectors we have constructed (shown above) are
then to be cut apart and placed in the manner shown in the figure
below.
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This placement suggests that we have a figure that approximates a
parallelogram.* That is, were the circle cut into more sectors, then
the figure would look even more like a true parallelogram. Let us
assume it is a parallelogram. In this case, the base would have a
length of half the circumference of the original circle, since half of
the circle’s arcs are used for each of the two sides of the approxi-
mate parallelogram. In other words, we formed something that
resembles a parallelogram where one pair of opposite sides are not
straight lines, rather they are circle arcs. We will progress as though
they were straight lines, realizing that we will have lost some accu-
racy in the process. The length of the base is %C. Since C = 2nr,
the base length is, therefore, nr. The area of a parallelogram is equal
to the product of its base and altitude. Here the altitude is actually
the radius, r, of the original circle. Therefore, the area of the “par-
allelogram” (which is actually the area of the circle we just cut
apart) is (nr)(r) = nr?, which gives us the commonly known formula
for the area of a circle. For some readers this might be the first time
that the famous formula for the area of a circle, A = n7?, actually has
some real meaning.

The Square and the Circle

Without taking the reader’s attention too far afield, it might also be
interesting to point out that m has the unique distinction of taking
the area of a square, whose side has the length of the radius of a
circle, and converting its area to that of the circle. It is the constant
value connector in this case. The area of the square (fig. 1-3) is 2
and, when multiplied by &, gives us the area of the circle: nr.

4. A parallelogram is a quadrilateral (a four-sided polygon) with opposite sides parallel.
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Fig. 1-3

The Value of n

Now that we have an understanding of what n meant in the context
of these old familiar formulas, we shall explore what the actual
value is of this ratio n. One way to determine this ratio would be to
carefully measure the circumference of a circle and its diameter and
then find the quotient of these two values. This might be done with
a tape measure or with a piece of string. An extraordinarily careful
measurement might yield 3.14, but such accuracy is rare. As a
matter of fact, to exhibit the difficulty of getting this two-place
accuracy, imagine twenty-five people carrying out this measure-
ment experiment with different-size circular objects. Imagine then
taking the average of their results (i.e., each of their measured cir-
cumferences divided by their measured diameters). You would
likely be hard pressed to achieve the accuracy of 3.14.

You may recall that in school the commonly used value for xt is

3.14 or —273 Either is only an approximation. We cannot get the
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exact value of . So how does one get a value for 1?7 We will now
look at some of the many ingenious ways that mathematicians over
the centuries have tried to get ever-more-precise values for n. Some
are amusing; others are baffling. Yet most had significance beyond
just getting closer approximations of n.

One of the more recent attempts to get a closer approximation of
© took place in Tokyo. In his latest effort, in December 2002, Pro-
fessor Yasumasa Kanada (a longtime pursuer of ) and nine others at
the Information Technology Center at Tokyo University calculated
the value of « to 1.24 trillion decimal places, which is six times the
previously known accuracy, calculated in 1999. They accomplished
this feat with a Hitachi SR8000 supercomputer, which is capable of
doing 2 trillion calculations per second. You may ask, why do we
need such accuracy for the value of n? We don’t. The methods of cal-
culation are simply used to check the accuracy of the computer and
the sophistication of the calculating procedure (sometimes referred to
as an algorithm), that is, how accurate and efficient it is. Another way
of looking at this is how long will it take the computer to get an accu-
rate result? In the case of Dr. Kanada, it took his computer over six
hundred hours to do this record-setting computation.

It might be worthwhile to consider the magnitude of 1.24 tril-
lion. How old do you think a person who has lived 1.24 trillion
seconds might be? The question may seem irksome since it
requires having to consider a very small unit a very large number
of times. However, we know how long a second is. But how big
is one trillion? A trillion is 1,000,000,000,000, or one thousand
billion. Thus, to calculate how many seconds there are in one
year: 365 X 24 X 60 x 60 = 31,536,000 seconds. Therefore,
e =31,709.791983764586504312531709792 = 31,710
years, or one would have to be in his 31,710th year of life to have
lived one trillion seconds!
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The value of & continues to fascinate us. Whereas a common
fraction results in a periodic decimal, © does not. A periodic dec-
imal is a decimal that eventually repeats its digits indefinitely. Con-

sider the common fraction % By dividing 1 by 3, we get its dec-

imal equivalent as 0.3333333.5 This decimal has a period of one,
which means that the one digit, 3, repeats indefinitely. Here are

some other periodic decimals:
%: .50000, % = .6666, and % = 0.285714285714285714.

We place a bar over the last repeating period to indicate its con-
tinuous repetition. The decimal % has a period of six, since there are
six places continuously repeating.

There is no periodic repetition in the decimal value of ©. As a
matter of fact, although some would use the decimal approximation
of m to many places as a table of random numbers—useful in ran-
domizing a statistical sample—there is even a flaw there. When you
look at, say, the first 1,000 decimal places of &, you will not see the
same number of each of the ten digits represented. Should you
choose to count, you will find that the digits do not appear with
equal frequency even in the first 150 places. For example, there are
fewer sevens (10 in the first 150 places) than threes (16 in the first
150 places). We will examine this situation later.

n Peculiarities

There are many peculiarities in this list of digits. Mathematician
John Conway has indicated that if you separate the decimal value

5. The bar over the 3 indicates that the 3 repeats indefinitely.
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of m into groups of ten places, the probability of each of the ten
digits appearing in any of these blocks is about one in forty thou-
sand. Yet he shows that it does occur in the seventh such group of
ten places, as you can see from the grouping below:

n = 3.1415926535 8979323846 2643383279 5028841971
6939937510 5820974944 [5923078164 |0628620899 8628034825
3421170679 8214808651 3282306647 0938446095 5058223172
5359408128. . .

Another way of saying this is that every other grouping of ten has
at least one repeating digit. The sums of these digits also show
some nice results: the sum of the first 144 places is 666, a number
with some curious properties as we shall see later.

On occasion, we stumble upon phenomena involving nt that
have nothing whatsoever to do with a circle. For example, the prob-
ability that a randomly selected integer (whole number) has only
unique prime divisors® is ;f'— Clearly this relationship has nothing
to do with a circle, yet it involves the circle’s ratio, . This is just
another feature that adds to the centuries-old fascination with n.

The Evolution of the Value of =

There is much to be said for the adventures of calculating the value
of . We will consider some unusual efforts in the next few chap-
ters. However, it is interesting to note that Archimedes of Syracuse

6. “Unique prime divisors” refers to divisors of a number that are prime numbers
and not used more than once. For example, the number 105 is a number with unique prime
divisors: 3, 5, and 7, while 315 is a number that does not have unique prime divisors: 3,
3, 5, and 7, since the prime divisor 3 is repeated.



24 I8

(287-212 BCE) showed the value of &t to lie between 3— and 3—
That is,

10 1
3;< < 3;
223 22
ETIRNE

3.1408 ... <nt<3.1428 ...

The Dutch mathematician Ludolph van Ceulen (1540-1610) calculated
7 to thirty-five places, so for a time the ratio & was called Ludolph’s
number. When Ludolph van Ceulen finished his calculations, he wrote
the following: “Die lust heeft, can naerder comen” (‘“The one who has
the desire, can come closer”).

Another early technique for calculating n was discovered by
John Wallis (1616—-1703), a professor of mathematics at Cambridge
and Oxford universities, who subsequently published it in his book,
Arithmetica infinitorum (1655). There he presented a formula for
(actually 7, which we then merely double to get m). The following
is Wallis’s formula:

T _ 2%2 4><4 6><6 8><8 y 2nXx2n y
27 1x3 3x5 5x7 1x9 (2n—1)x(2n+1)

This product converges to the value of % That means it gets closer

and closer to the value of g as the number of terms increases.
What is it about the value of & that evokes so much fascination?
For one, it cannot be calculated by a combination of the operations
of addition, subtraction, multiplication, and division, which was
suspected by Aristotle (384-322 BCE). He hypothesized that &t is
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an irrational number;’ in other words, the circumference and the
radius of a circle are incommensurable. That means there doesn’t
exist a common unit of measure that will allow us to measure both
the circumference and the radius. This was proved in 18068 by the
French mathematician Adrien-Marie Legendre (1752-1833)—
more than two millennia later!

But even more fascinating is the fact that n cannot be calculated
by a combination of the operations of addition, subtraction, multi-
plication, division, and square root extraction. This means w is a
type of nonrational number called a transcendental number.® This
was already suspected by the Swiss mathematician Leonhard Euler
(1707-1783),'% but it was first proved in 1882 by the German math-
ematician (Carl Louis) Ferdinand Lindemann (1852-1939).
Remember, it is sometimes more difficult to prove that something
cannot be done than to prove it is possible to be done. Thus, for
Lindemann to establish that & could not be produced by a combina-
tion of the five operations—addition, subtraction, multiplication,
division, and square root extraction—was quite an important con-
tribution to the development of our understanding of mathematics.

The establishment of the transcendence of n extinguished the
hopes of all those who sought a method to “square the circle,” that
is, to construct!! a square of side s, such that its area equals that of
the given circle of radius r. Lindemann killed that hope for all time.

7. An irrational number is one that cannot be expressed as a fraction that has inte-
gers in its numerator and denominator.

8. The proof in 1767 by the German mathematician Johann Heinrich Lambert
(1728-1777) had a flaw in it.

9. A transcendental number is one that is not the root of a polynomial equation with
rational coefficients. Another way of saying this is that it is a number that cannot be
expressed as a combination of the four basic arithmetic operations and root extraction. In
other words, it is a number that cannot be expressed algebraically. 7 is such a number.

10. The term transcendental number was introduced by Euler.

11. By “construct” we refer to the Euclidean constructions, namely, using a pair of
compasses (or as it is commonly called “a compasses”) and an unmarked straightedge.
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You will see when we discuss the history of m in the next chapter that
it was in large part this quest for squaring the circle that resulted in
more and more accurate approximations for the value of n. Despite
Lindemann’s work and that of others, many enthusiasts keep sending
their “proofs” for squaring the circle to universities every year. They
don’t, or can’t, accept the notion of the impossibility of squaring a
circle. They cannot understand that when something has been proved
to be impossible, it doesn’t mean that we just weren’t able to figure
out how to do it; rather, we proved it is impossible to do.

Sharpening Our Intuition with =

Even in everyday life, knowledge of what n really represents can
heighten our understanding of our faulty perceptions. Here is a
simple illustration of how this knowledge lets us see the geometric
world more objectively. Take a tall and narrow cylindrical drinking
glass. Ask a friend if the circumference is greater or less than the
height. The glass should be chosen so that it would “appear” to
have a longer height than its circumference. (The typical tall
narrow drinking glass fits this requirement.) Now ask your friend
how she might test her conjecture (aside from using a piece of
string). Recall for her that the formula for the circumference of a
circle is C = nd (n times the diameter). She should recall that &t =
3.14 is the usual approximation, but we’ll be even more crude and
use © = 3. Thus the circumference will be 3 times the diameter,
which can be easily “measured” with a stick or a pencil and then
marked off 3 times along the height of the tall glass. Usually you
will find that the circumference is longer than the height of the tall
glass, even though it does not “appear” to be so. This little optical
trick is useful to demonstrate the value of knowing the ratio of the
circumference of a circle to its diameter, namely, &.
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What the Bible Has as the Value of =

Let’s stay with this “crude” approximation of m for a moment.
You’ll be surprised to know that for centuries scholars believed that
this was the value that ©= was to have had in biblical times. For
many years virtually all the books on the history of mathematics
stated that in its earliest manifestation in history, namely, in the Old
Testament of the Bible, the value of = is given as 3. Yet recent
“detective work” shows otherwise.!?

One always relishes the notion that a hidden code can reveal
long-lost secrets. Such is the case with the common interpretation
of the value of n in the Bible. There are two places in the Bible
where the same sentence appears, identical in every way except for
one word, which is spelled differently in the two citations. The
description of a pool, or fountain, in King Solomon’s temple is
referred to in the passages that may be found in 1 Kings 7:23 and
2 Chronicles 4:2, and reads as follows:

And he made the molten sea!3 of ten cubits from brim to brim,
round in compass, and the height thereof was five cubits; and a
line of thirty cubits did compass it round about.

The circular structure described here is said to have a circumfer-
ence of 30 cubits'* and a diameter of 10 cubits. From this we notice
that the Bible has n = % = 3. This is obviously a very primitive
approximation of m. A late-eighteenth-century rabbi, Elijah of Vilna

12. Alfred S. Posamentier and Noam Gordon, “An Astounding Revelation on the
History of ®,” Mathematics Teacher 77, no. 1 (January 1984): 52.

13. The “molten sea” was a gigantic bronze vessel for ritual ablutions in the court of
the First Temple (966-955 BCE). It was supported on the backs of twelve bronze oxen
(volume = 45,000 liters).

14. A cubit is the distance from a person’s fingertip to his elbow.
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(1720-1797),15 one of the great modern biblical scholars who
earned the title “Gaon of Vilna” (meaning genius of Vilna), came
up with a remarkable discovery, one that could make most history-
of-mathematics books faulty if they say that the Bible approxi-
mated the value of m as 3. Elijah of Vilna noticed that the Hebrew
word for “line measure” was written differently in each of the two
biblical passages mentioned above.

In 1 Kings 7:23 it was written as M, whereas in 2 Chronicles
4:2 it was written as . Elijah applied the ancient biblical analysis
technique (still used by talmudic scholars today) called gematria,
where the Hebrew letters are given their appropriate numerical
values according to their sequence in the Hebrew alphabet, to the
two spellings of the word for “line measure” and found the fol-
lowing. The letter values are P = 100, = 6, and i1 = 5. Therefore,
the spelling for “line measure” in 1 Kings 7:23 isMP =5+ 6 + 100
= 111, while in 2 Chronicles 4:2 the spelling 2 = 6 + 100 = 106.
Using gematria in an accepted way, he then took the ratio of these

two values: = = 1.0472 (rounded to four decimal places), which

he considere(lioihe necessary “correction factor.” By multiplying the
Bible’s apparent value of &, 3, by this “correction factor,” one gets
3.1416, which is © correct to four decimal places! “Wow!” is a
common reaction. Such accuracy is quite astonishing for ancient
times. Moreover, remember how just getting © = 3.14 using string
measurements was quite a feat. Now imagine getting © accurate to
four decimal places. We would contend that this would be nearly
impossible with typical string measurements. Try it if you need
convincing.

Let’s keep our focus on our effort to just getting acquainted
with nt. For the moment we are merely surveying the nature of m and
what it means.

15. In those days Vilna was in Poland, while today the town is named Vilnius and is
in Lithuania.
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Where the Symbol = in Mathematics Came From

You may be wondering by now where mathematicians actually got
the idea to represent the ratio of the circumference of a circle to its
diameter with the Greek letter n. According to the well-known
mathematics historian Florian Cajori (1859-1930), the symbol n
was first used in mathematics by William Oughtred (1575-1660) in
1652 when he referred to the ratio of the circumference of a circle
to its diameter as %, where n represented the periphery!® of a circle
and d represented the diameter. In 1665 John Wallis used the
Hebrew letter » (mem), to equal one-quarter of the ratio of the cir-
cumference of a circle to its diameter (what, today, we would refer
to as ).

In 1706 William Jones (1675-1749) published his book Syn-
opsis palmariorum matheseos, in which he used n to represent the
ratio of the circumference of a circle to its diameter. This is
believed to have been the first time that n was used as it is defined
today. Yet, Jones’s book alone would not have made the use of the
Greek letter & to represent this geometric ratio as popular as it has
become today. It was the legendary Swiss mathematician Leonhard
Euler, often considered the most prolific writer in the history of
mathematics, who is largely responsible for today’s common use of
n. In 1736 Euler began using & to represent the ratio of the circum-
ference of a circle to its diameter. But not until he used the symbol
7 in 1748 in his famous book Introductio in analysin infinitorum
did the use of © to represent the ratio of the circumference of a
circle to its diameter become widespread.

16. Note well, this is nor what © was later on to represent.
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Euler

Euler is not only the most prolific contributor to the development of
mathematics, he also has given us quite a few symbols that are still
commonly used today. These include the following:

f(x), for the common notation for a mathematical function

e, for the base of natural logarithms

a, b, c, for the lengths of the sides of a triangle

s, for the semiperimeter of a triangle

r, for the length of the radius of the inscribed circle of a triangle

R, for the length of the radius of a circumscribed circle of a tri
angle

%, for the summation sign

i, for the value of J-1

Euler discovered one of the most famous formulas in mathe-
matics. It involves the symbols e, i, and & in the following way:
€™ = —1. The mathematicians Edward Kasner and James Newman,
in their book Mathematics and the Imagination, make the fol-
lowing statement about this formula: “Elegant, concise, and full
of meaning, we can only reproduce it and not stop to inquire into
its implications. It appeals equally to the mystic, the scientist, the
philosopher, and the mathematician. For each it has its own
meaning.”'” They go on to tell the anecdote about the nineteenth-
century Harvard mathematician Benjamin Peirce, who having
come upon the formula “turned to his students and made a remark
which supplies in dramatic quality and appreciation what it may
lack in learning and sophistication: ‘Gentlemen,” he said, ‘that is
surely true, it is absolutely paradoxical; we cannot understand it,

17. Edward Kasner and James Newman, Mathematics and the Imagination (New
York: Simon and Schuster, 1940), p. 103.
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and we don’t know what it means, but we have proved it, and
therefore, we know it must be the truth.”” So it is with much of
mathematics—we prove something and it becomes accepted—
understanding can follow!

Since Euler is the father of the symbol that has the title role of
this book, we ought to take a glimpse into his interesting life his-
tory. Born in Basel, Switzerland, in 1707, he was initially taught
mathematics by his father, who himself studied under the famous
mathematician Jakob Bernoulli. This connection served him well,
for as the father noticed his son’s proclivity for the subject, he
arranged for him to study with Jakob Bernoulli’s son (also a famous
mathematician) Johann Bernoulli. Through the influence of the
Bernoulli family, Euler got a position at age twenty with the
Russian Academy in St. Petersburg, where he stayed for fourteen
years. During this time he rose to the position of chief mathemati-
cian. Although Euler spent the next twenty-five years at the
Prussian Academy, he never lost touch with the Russian Academy,
to which he returned for the remaining seventeen years of his life.

It is well known that Ludwig van Beethoven spent the last years
of his life totally deaf and, despite this enormous handicap, con-
tinued to produce magnificent musical compositions—most
notably his Ninth Symphony. An analogous calamity struck Euler.
Clearly the requirement of being able to see is essential to do math-
ematics, as one’s ability to hear sound is imperative to being able to
compose music. Euler lost the sight in his right eye as early as
1735, yet he was unimpaired in his mathematical output. This, by
the way, accounts for the poses that we see in pictures of Euler (see
fig. 4).

Soon after his return to St. Petersburg at the invitation of
Catherine the Great, Euler became blind, yet, largely due to his
incredible memory, remained just as productive. However, now he
had to dictate his ideas to his secretary. Euler’s record-setting
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output is about 530 books and articles during his lifetime, and many
more manuscripts were left to posterity. These continued to appear
in the Proceedings of the St. Petersburg Academy for forty-seven
years after his death. It is estimated that his total production was
about 886 books and articles.'8 Truly astonishing—especially since
he himself could not see many of these!

Leonhard Euler
fig. 1-4 a

18. Howard Eves, An Introduction into the History of Mathematics, Sth ed. (New
York: CBS College Publishing, 1983).
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Leonhard Euler
Fig. 1-4 b-c-d-e
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A = Paradox

We mentioned earlier that the interest taken in 7 is partially due to
its ubiquity. It quickly transcends the ratio that is used to define it.
The concept of m pops up in places where we are left truly per-
plexed. One such involves an entertaining illustration of a paradox
in geometry. This example may also be considered a geometric fal-
lacy. Follow along as we explain it, and see if you can determine
“what’s wrong here.”

In the figure below, the smaller semicircles extend from one end
of the large semicircle’s diameter to the other.

Fig. 1-5

Let us begin by showing that the sum of the arc lengths of the smaller
semicircles is equal to the arc length of the larger semicircle.
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That is, the sum of the smaller semicircles equals
ma mb mc 7d e
2 2 2 2 2

which is the arc length of the large semicircle, since the large semi-
circle’s arc length is one-half the diameter (AB) times n. This may
not “appear” to be true, but it is! Let’s imagine that we were to
increase the number of smaller semicircles along the fixed line seg-
ment AB.

This sort of progression of increasing the number of semicircles
can be seen in the following figures.

VAR
faba

1 1

Fig. 1-6 a-b-c-d-e

=%(a+b+c+d+e)=§(AB),
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They, of course, get smaller. The sum of these smaller semicir-
cular arcs “appears” to be approaching the length of the diameter
AB (referring back to the earlier figure), but, in fact, does not! Sup-
pose the diameter of the large semicircle is 2; then the semicircular
arc length is . If the sum of the increasingly smaller semicircles
becomes 7, then = is equal to 2, the length of the diameter. Impos-
sible! (By now we know that even in the Bible it was recognized
that © was at least 3.) So what “appears” to be true from the dia-
gram and some “logical” extension of it, namely, that the semicir-
cular arc length is equal to the straight-line segment, leads to an
absurd conclusion. It does not follow, however, that the sum of the
semicircles approaches the length of the limit, which in this case is
AB. This “apparent limit sum” is absurd, since the shortest distance
between points A and B is the length of segment AB, not the semi-
circle arc AB (which equals the sum of the smaller semicircles).
Just as this faulty reasoning led us to a weird conclusion, some
faulty thinking led some Indiana legislators to hold a place in the
history of mathematics with some rather strange actions. Read on.

Legislating =

The value of ® has vexed mathematicians and others for centuries,
yet perhaps the most outrageous attempt to “nail down” the value
of n occurred in Indiana in 1897. A physician there by the name of
Edward Johnson Goodwin (1828-1902) wrote a paper on measure-
ments of the circle and convinced his local legislative representa-
tive, Taylor I. Record, to introduce it as a bill in the legislature. The
epoch-making suggestion that he put to Taylor I. Record was this:
If the state would pass an act recognizing his, Goodwin’s, dis-
covery, then he would allow all Indiana textbooks to use it without
paying him a royalty.
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He had already copyrighted his findings in various European
countries and in the United States. His attempt to present his find-
ings at the Columbian Exposition in Chicago in 1893 failed how-
ever. He did publish a monograph in the American Mathematical
Monthly, a new journal, eager to accept almost anything in its first
year. From Goodwin’s monograph one can get as many as nine dif-
ferent values of n. These were calculated by mathematician David
Singmaster'® to be:

n = 4, 3.160494, 3.232488, 3.265306, 3.2, 3.333333,
3.265986, 2.56, and 3.555556.

On January 18, 1897, the monograph was entered into the leg-
islature as House bill no. 246.

A bill for an act introducing a new mathematical truth and offered
as a contribution to education to be used only by the State of Indiana
free of cost by paying any royalties whatever on the same, provided
it is accepted by the official action of the legislature of 1897.

At first it was accepted without negative vote in the House of Rep-
resentatives of Indiana. It could have attained legal status, where all
other states would have to pay for the right to this “exact value” of m.
Till then, clearly, one needed to pay nothing for mathematical truths.

By legislating the value of n, Goodwin believed he would put
the problem of determining the value of m to rest. Fortunately,
through the newspapers in Indianapolis, Chicago, and New York,
much ridicule was cast upon this silly bill, and the Indiana Senate
eventually killed it. This is just one of many unreasonable efforts to
secure a value for m.

19. David Singmaster, “The Legal Values of Pi,” Mathematical Intelligencer (New
York: Springer Verlag) 7, no. 2 (1985): 69-72.
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n in Probability

n shows up in some of the strangest places. To whet your appetite,
we offer one example of how n seems, amazingly enough, to invade
fields of mathematics that apparently have nothing to do with
geometry, such as probability.

The French naturalist Georges Louis Leclerc, Comte de Buffon
(1707-1788) is primarily remembered for his work to popularize the
natural sciences in France, and his Histoire naturelle (1749-1767) is
still prized today, largely because of the exceptional beauty of the
illustrations. In it all the known facts of the natural sciences are elo-
quently discussed, and Buffon even foreshadowed the theory of evo-
lution. Yet in mathematics he is remembered for two things: his
French translation of Newton’s Method of Fluxions, the forerunner
of today’s calculus, and more so even for the “Buffon needle
problem.”? It is the latter that is of particular interest to us here.

In his “Essai d’arithmétique morale,” published in 1777, he
proposes a very intriguing phenomenon relating n to probability. It
goes this way: suppose you have a piece of paper with ruled par-
allel lines throughout, equally spaced (at a distance d between
lines), and a thin needle of length / (where [ < d). You then toss the
needle onto the paper many times. Buffon claimed that the proba-
bility that the needle will touch one of the ruled lines is % Since
Buffon was a man of wealth and had much time to spare, he tried
this experiment with thousands of tosses to substantiate his conclu-
sions. For the next thirty-five years this problem was essentially
forgotten until the preeminent mathematician Pierre Simon Laplace
(1749-1827) popularized it. We must bear in mind that Laplace was
one of the greatest French mathematicians, and in 1812 he pub-

20. For a more complete discussion of Buffon’s needle problem see Lee L.
Schroeder, “Buffon’s Needle Problem: An Exciting Application of Many Mathematical
Concepts,” Mathematics Teacher 67, no. 2 (1974): 183-86.
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lished a major work in probability, Théorie analytique des proba-
bilities, which gave him much prominence in the field.

You may want to try Buffon’s experiment yourself. Begin by sim-
plifying the problem (without any loss of generality) by letting / = d, so
that the probability of the needle (now with a length equal to the space
between the lines) touching one of the lines is % That is, Tt = %, where
P is the probability that the needle will intersect the line, which is

_ number of line-touching tosses

number of all tosses

So to calculate m this way, just toss the needle and tally the line-touching
tosses and the total number of tosses. Then put them into this formula:

2 X number of alltosses

number of intersection tosses

The more tosses you have, the more accurate your estimate of
n should be. In 1901 the Italian mathematician Mario Lazzarini
tried this with 3,408 tosses of the needle and got n = 3.1415929, an
amazing accuracy. You might also try to have a computer simulate
the needle tossing. It’s much easier that way. In any case, this is by
far not the most accurate way to calculate the value of «. It is, how-
ever, quite novel. Just think about it. The probability of a tossed
needle intersecting a line is related to m, the ratio of the circumfer-
ence of a circle to its diameter.

We will next provide you with a simple tour through the long
journey mathematicians have taken over four thousand years to get an
increasingly more accurate estimate for the value of n. This history of
n will take some large leaps; however, we will highlight the more sig-
nificant and easily understood methods developed over the millennia.






Chapter 2

The History of &t

In the Beginning

The story of t probably goes much further back in time than we can
document through written records. Somewhere in the past, after a
wheel (or any truly circular object) was invented, the circumference
was probably measured for the sake of comparison. Perhaps in the
early days it was important to measure how far a wheel would
travel in one revolution. This might have been done by rolling the
wheel on the ground and marking off the distance it rolled in
exactly one revolution (without slippage, of course) or with some-
thing resembling a string placed along it. The diameter, a much
easier dimension to measure, since it merely required placing a
straight stick or rule alongside it and marking off its length, was
probably also noted. We can assume that these two measurements

41
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were compared for various circular objects. This was likely the
beginning of the establishment of comparison between the two
measurements that seem related to each other. Was there some sort
of common difference or common ratio between their lengths?
Each time this comparison showed that the circumference was just
a bit more than three times as long as the diameter. The question
that perplexed individuals over the millennia was how much more
than three times the diameter was the circumference? That would
indicate that the relationship was one of a ratio. The history of = is
the quest to find the ratio between the circumference of a circle and
its diameter.

The Ancient Egyptians

Frequent measurements probably showed that the part exceeding three
times the diameter appeared to be about one-ninth of the diameter. We
can assume this from the famous Rhind Papyrus, written by Ahmes, an
Egyptian scribe, about 1650 BCE.! He said that if we construct a
square with a side whose length is eight-ninths of the diameter of the
circle, then the square’s area will be equal to that of the circle. At this
point, you can see there was no reason to find the ratio of the circum-
ference to the diameter. Rather, the issue was to construct a square,
using the classical tools (an unmarked straightedge and a pair of com-
passes), with the same area as that of a given circle. This became one
of the three famous problems of antiquity.?> Although we know today

I This was a mathematical practical handbook, containing eighty-five problems copied by the
scribe Ahmes from previous works. Alexander Henry Rhind, a Scottish Egyptologist, purchased this
eighteen-foot-long (one-foot-wide) manuscript in 1858, which is now in the collection of the British
Museum. This is one of our primary sources of information about the Egyptian mathematics of the
times

2 The other two famous problems of antiquity are using only an unmarked straightedge and a
pair of compasses to construct a cube with twice the volume of a given cube and using these same
tools to trisect any angle.
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that this is an impossible construction,? it, nonetheless, fascinated
mathematicians for centuries. It was the effort to construct a square
with an area equal to that of a given circle that produced the early
approximations of m. For example, if we inspect the process used in the
Rhind Papyrus, we can deduce how close the ancient Egyptians were
to the true value of . We will now try to replicate their work.

We will begin with a circle with diameter d. According to the
above stipulations, the side of the square would then be %d.

N

N |

Fig. 2-1

We know from today’s knowledge about circles that the area of
the circle* is nr?, which for this circle gives us’

a\¥ &
T|l—=| =n—
(5) =%

3. As noted earlier, the impossibility of constructing a square with area equal to that of a given
circle was conjectured for many years, but was first proved conclusively in 1882 by the German
mathematician Carl Louis Ferdinand Lindemann (1852-1939).

4. We mentioned that the symbol 1t was not used to represent the ratio of the circumference of
a circle to the diameter until more than three thousand years later. However, for convenience and to
avoid confusion, we will use the symbol &t already at this early stage.

5. The equal sign (=) was first used by the English physician and mathematician Robert
Recorde (1510?7-1558) in “The Whetstone of Witte” (1557), when he said that “noe .2. thynges, can
be moare equalle” than the two parallel lines that make up the equal sign.
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The area of the square is simply

(g)2_64d2
9 81

Since Ahmes assumed these to be equal, we get the fol-
lowing equation:

d* 64d’
T—=

4 81

r_6

4 8l
So

256

wT=

TR =3.160493827160493827160493827

This is a reasonably close approximation of what we know the
value of & to be by using our modern methods.

Just Before the Common Era

We now take a big leap in time to the Babylonians, which spans
from 2000 BCE to about 600 BCE. In 1936 some mathematical
tablets were unearthed at Susa (not far from Babylon).® One of
these compares the perimeter of a regular hexagon’ to the circum-
ference of its circumscribed circle. The way they did this led
today’s mathematicians to deduce that the Babylonians used 3% =
3.125 as their approximation for n. How does this compare to the

Egyptians’ approximation for ©t? It is just a very little bit closer.

6. Today, easiest located as the region between the Tigris and Euphrates rivers.
7. A regular polygon (in this case a hexagon, a polygon of six sides) is one where all the sides
are the same length and all the angles are equal.
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As we progress through the early history of the development of the
ratio (m) of the circumference to the diameter of a circle, we come upon
the Bible (Old Testament) written about 550 BCE, where the Talmud’s
books of Kings and Chronicles describe King Solomon’s water basin
(or well) and give us the impression that they believed ©t = 3. However,
we discussed earlier (see pages 27-28) the notion that there might have
been a hidden value in these writings yielding the value n = 3.1416,
even a more accurate value than the earlier ones.

One of the biggest challenges facing these ancient mathematicians
was to be able to measure a circular figure (even parts of circle) in
terms of straight lines. This was essentially the problem to be solved
in “squaring the circle,” that is, constructing a side of a square whose
area is equal to that of a given circle. Circular arcs and straight lines
could not find a common measure. There was always “something left
over” when trying to compare these two types of measurement. Hip-
pocrates of Chios, another Greek mathematician who flourished about
430 BCE, was the first to be able to show that areas of lunes (i.e., areas
bounded by circular arcs) can be equal to the area of a rectilinear
figure, such as a triangle.3 Although Hippocrates’ works are lost, we
shall show an example that may have been similar to his. In other
words, we will show an example where a region bounded by circular
arcs can be exactly equal to a region bounded by straight lines.

To tackle this, let’s first recall the famous Pythagorean theorem. It
states that the sum of the squares of the legs of a right triangle is equal
to the square of the hypotenuse. This can be stated a bit differently
with the same effect: The sum of the squares on the legs of a right tri-

angle is equal to the square on the hypotenuse. Geometrically this can

8 A rectilinear figure is one bounded by straight line segments.
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be seen in figure 2-2, where the sum of the areas of the two shaded

squares is the same as the larger area of the unshaded square.

F
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Fig. 2-2

This can then be restated as the sum of the areas of the squares
on the legs of a right triangle is equal to the area of the square on
the hypotenuse, which then draws us a big step forward to a gener-
alization that will allow us to replace the squares with any similar
polygons, as long as they are placed in corresponding orientation.
That is, the corresponding sides of these similar polygons must
coincide with the sides of the right triangle on which they are
placed. We can then make the following generalization:

The sum of the areas of the similar polygons on the legs
of a right triangle is equal to the area of the similar
polygon on the hypotenuse.
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For our purposes, we will use semicircles to represent our similar
polygons, since all semicircles are the same shape, and hence, sim-
ilar. This will then read as follows:

The sum of the areas of the semicircles on the legs of a
right triangle is equal to the area of the semicircle on the
hypotenuse.

This extension of the Pythagorean theorem can be proved, by consid-
ering the three sides of the right triangle to be 2a, 2b, and 2c. Then the
areas of the three semicircles are ”—;—2- % and '% Let’s see if this rela-
tionship holds. That is, is %+ ™ =7 Dividing through by the
common factor 7 gives us a* + b? = ¢?, which we know will result by
applying the Pythagorean theorem to this right triangle. That is, we get
4a? + 4b* = 4%, which is then a? + b? = ¢. Thus, for the figure below

(fig. 2-3), we can say that the areas of the semicircles relate as follows:

Area P = Area Q + Area R

Fig. 2-3
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Suppose we now flip semicircle P over the rest of the figure
(using AB as its axis). We would get a figure as shown below.

Notice that the flipped-over semicircle now forms four new regions
marked L,, L), J,, and J,.

y
/
,’/

J2

Fig. 2-4

Let us now focus on the lunes formed by the two semicircles. We
mark them L, and L,.

L1 .
JP ¥
® . . B
(
J2
L2
Fig. 2-5

When we extended the Pythagorean theorem (above) to semicircles
instead of squares, we established that

Area P = Area Q + Area R



The History of © 49

In the figure above, keeping in mind the largest semicircle’s
new position—that being flipped over the triangle—that same rela-
tionship can be written as follows:

AreaJ + AreaJ,+ AreaT = Area L, + Area J, + Area L, + Area J,
Take a moment to convince yourself of this relationship.

If we subtract Area J, + Area J, from both sides, we get the
astonishing result:

Area T = Area L + Area L,

That is, we have the area of a rectilinear® figure (the triangle) equal
to the sum of the areas of some nonrectilinear figures (the lunes).'”
This is a very profound result, since it is at the crux of one of the
most vexing issues in mathematics—that of finding equality
between measurements of circles and rectilinear figures. As we said
before, this was one of the challenges that faced ancient mathemati-
cians as they tried to square the circle.

There is a nice three-dimensional example in which a sphere
has the same volume as a rectilinear figure, namely, a tetrahedron,
which is a solid figure with four faces (planes). So as not to disturb
the continuity in this chapter, we provide this discussion in
appendix A. (See page 293.)

Although the circle-ratio = is indispensable in the calculation of
the area of circles (or semicircles), the famous Pythagorean the-
orem eliminates © from the comparison of areas of semicircles on
the three sides of a right triangle.

9 A rectilinear figure is one that is only bounded by straight lines.
10. A lune in the plane is a closed figure bordered by circular arcs.
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Figo 2'6

Let us return to the relationship we established earlier, namely, that
Area P = Area Q + Area R

so that we get

(5) -3 (8) (5]

—eole| — ==—ofle| = + —eTe| —

2 2 2 2 2 2
where a = BC, b = AC, and ¢ = AB

This gives us

LI PR R
8 8 g8
which reduces to ¢? = b? + a?. Notice the n disappeared!'!
Euclid’s Elements (ca. 300 BCE), clearly the first and most
comprehensive geometry book ever written, also made a contribu-
tion to the history of n. In Book XII, Proposition 2, Euclid states

and proves that “circles are to each other as the squares on the

11. We simply multiplied each term by %.
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diameters.” This was probably taken from Hippocrates (not to be
confused with the physician, Hippocrates of Cos). This is particu-
larly significant because for the first time it establishes that there is,
in fact, a constant, such as w, that relates the circumference to the
diameter of a circle. What is being said here might be clearer if
shown symbolically:

area of circle 1 _ (diameter of circle 1)’

area of circle 2 (diameter of circle 2)°

A simple (and legitimate) algebraic manipulation lets us change
the proportion above to read as

area of circle 1 area of circle 2
= = some constant value

(diameter of circle 1)*  (diameter of circle 2)*

Let’s take just one of these fractions and set it equal to the con-

stant, which today we know!? is actually %.

Another way of writing this is that the area of circle 1 equals
(diameter of circle 1)? X (some constant value)

2

=7 = ()

NG

=4r2£=n’r
4

This says that the area of a circle is equal to some constant, say %
times the square of the diameter (or for that matter twice the
radius). Eventually, it leads us to the formula for the area of a circle.
Actually this work of Euclid only hints at the possible awareness of
a constant . We followed it to (what we know today as) the correct
representation of w.

12 Using our modern knowledge, we can represent this as (’Zt—r) = ZL = % .
r r
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Archimedes’ Contributions

One of the greatest contributors in the early history of mathematics
was Archimedes, born in Syracuse (Sicily) about 287 BCE, the son
of the astronomer Phidias. For a time he studied with the successors
of Euclid in Alexandria, Egypt. There he also met Conon of Samos,
for whom he had high regard as an astronomer and mathematician,
and Eratosthenes of Cyrene, with whom he corresponded for years
after leaving Egypt. His contributions to mathematics and physics
are legendary. We will focus only on one small part of his work:
that involving the circle and n.

Not until Archimedes was there a rigorous connection between
the circumference of a circle and its area. This can be found in
Archimedes’ Measurement of the Circle. In this important book
there are three propositions regarding the circle that have had a role
in the historical development of the value of n. We shall present
these three propositions along with a bit of explanation of each.

1. The area of a circle is equal to that of a right triangle where
the legs of the right triangle are respectively equal to the radius and
circumference of the circle.

P c 2y

Fig. 2-7
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The area of the circle is the familiar nr2, and the area of the right
triangle (which is one-half the product of its two legs) is

%(r)(27zr) —

Although Archimedes stated this in a somewhat convoluted way, it
is amazing that he hit the formula that we accept today right on the
head!

2. The ratio of the area of a circle to that of a square with side
equal to the circle’s diameter is close to 11:14.

To investigate this proposition, we will set up the ratio as it is
given to us.

C F
B 2r
D E

Fig. 2-8

The area of the circle is n72, and the area of the square (whose
side is 2r) is (2r)*> = 472. The ratio of these is

nrz_z_ll

47 4 14
as was stated in the proposition. When we simplify this proportion we get

44 22
T=—=—
14 7

9

which should remind you of another very familiar approximation of .
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3. The circumference of a circle is less than 3% times its diam-
eter but more than 3 ';% times the diameter.

Let us take a quick look at how Archimedes actually came to this
conclusion. (A more-detailed discussion of his work will be found in
chapter 3.) What Archimedes did was to inscribe a regular hexagon'? in
a given circle and circumscribe a regular hexagon about this same
circle. He was able to find the areas of the two hexagons and then knew
that the area of the circle had to be somewhere between these two areas.

Inscribed and circumscribed hexagons

Fig. 2-9

He then repeated this with regular dodecagons (twelve-sided
regular polygons) and again calculated the area of each, realizing
that the circle’s area had to be between these values, and more
closely “sandwiched in,” to use a modern analogy.

13. A regular hexagon is a six-sided polygon that has all sides and angles equal.
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This was then done for twenty-four-sided regular polygons,
forty-eight-sided regular polygons, and ninety-six-sided regular
polygons, each time getting closer and closer to the area of the
circle. Mind you, this was done before the Hindu number system
was used in the Western world—no mean feat of calculations!
Archimedes finally concluded that the value of m is larger than
3';% and less than 3%. How does this compare to our known value
of n? We change these fractions to decimal form so that we can
make a comparison of their values to what we know today as the
true value of w.

Therefore, since

33= 3.14084507042253521126760563380281690
and
32= 3.142857142857142857

we can see how well Archimedes placed the value of n:

3.14084507042253521126760563380281690 <7 < 3.142857

This is consistent with what we know as the value of & today,
3.1415926535897932384626433832795028841971693993751058
...(taken to over fifty decimal places).

Our known value of = is nicely squeezed in between the two
values that Archimedes used as boundaries.

For now, we can leave this with the notion that he saw a circle
as the limit of the ever-increasing number of sides of a regular
polygon of a fixed perimeter.
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Two closer approximation values have been found, according to

Heron of Alexandria (75-110), in a lost document of Archimedes:

211,872 195,882
< <——,
67,441 62,351

which places = in the interval 3.14 1590 ...<n1<3.141601 . ..

In the passing years, the approximations became ever closer to the
value of &, so that in 200 BCE Apollonius of Perge (262-190 BCE),
a competitor of the great Archimedes, seemed to have discovered an
even better approximation for n than that of Archimedes:

= 3—177 = 3,927 =3.1416
1,250 1,250
Regardless, we still consider Archimedes to be one of the major

contributors to the history of mathematics.

Archimedes’ life proceeded quietly up to his death in 212 BCE.
He was killed defending his hometown of Syracuse during the
Second Punic war. Archimedes was believed to have said to a
Roman soldier, who came to summon him to the emperor Mar-
cellus, and whose shadow covered one of his drawings in the sand:
“Don’t disturb my circles” (“Noli turbare circulos meos”), where-
upon the soldier stabbed him to death. Archimedes requested that
his tombstone be decorated with a sphere contained in the smallest
possible cylinder and inscribed with the ratio of the sphere’s
volume to that of the cylinder.'* Archimedes had considered the
discovery of this ratio the greatest of all his accomplishments.

14. This may be found in Archimedes’ book On the Sphere and the Cylinder.
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N~

Fig. 2-10

The relationship between these two solids is truly unusual. The
ratio of their volumes and the ratio of their surface areas is the
same! Both are 2:3. We can easily calculate these with our current
knowledge about the formulas for these various figures.

The formula for the volume of a sphere is %nr‘.‘5 The volume
of the cylinder is obtained by taking the area of the base and mul-
tiplying it by the height:

(n’rz)(2r) =2rr’ = gnr3

(we wrote 2 as the fraction %’ to make the comparison easier).
Thus the ratio of the volumes of the sphere to the cylinder is

4 rr
3

2
nr 3

w |

15 This formula was first published by Archimedes in his book On the Sphere and the Cylinder.
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Now let’s compare the surface areas of the two solids. The for-
mula for the surface area of a sphere is 41r’. The surface area of the
cylinder is found by adding the areas of the two bases to the lateral
area of the cylinder:

(2)(nr*)+(2r)(27r) = 677

Comparing these two surface areas, we get

4nrt 2

6nr’ 3

Lo and behold, the same ratio—truly amazing!

In his book On the Sphere and the Cylinder, Archimedes also
stated that “a sphere is four times as great as a cone with a great
circle of the sphere as its base and with its height equal to the radius
of the sphere.”!® This can be extended by the comparison of the
cone to the cylinder that contains the sphere. We can easily estab-
lish Archimedes’ proposition above, for the cone with base radius r
and height r has a volume equal to

%(nrz)(r)= %nri

which is i of the volume of the sphere of radius .

Now if we double the length of the height of this cone so that it can
be inscribed in the cylinder of equal height, then its volume will be

%(nrz)(Zr) = %ﬂr‘i

or one-half the volume of the sphere.

16 The great circle of a sphere is the largest circle that can be drawn on a sphere—or to put it more
simply, if we were to cut a sphere into two hemispheres, their base would be a great circle of the sphere.
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Thus we can represent that the volumes of
[gﬂ r’
cone | = ,
4
sphere {gn-f],

and cylinder [27tor3:|
with the same base are in the ratio of 1:2:3.

Archimedes is still revered today, hailed as the greatest thinker
of his time, with countless ingenious inventions and mathematical
achievements. As evidence of his popularity, on October 29, 1998,
a book of his, on the calculation of areas and volumes, brought $2
million at a Christie’s auction.

Although we assumed earlier that in ancient times circumfer-
ences might have been measured by the distance a wheel traveled
in one revolution, Marcus Vitruvius Pollio, more commonly known
today as Vitruvius, a Roman architect and engineer, used this
method to calculate & as 3% = 3.125. This was not exactly a step
forward, given that he wrote his book da Architectura in the year
20 BCE.

The Beginning of the Common Era

We now get a bit closer to the true value of m with the great
astronomer, geographer, and mathematician Claudius Ptolemaeus,
popularly known as Ptolemy (ca. 83 CE—ca. 161 CE), who about
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150 CE wrote an astronomical treatise, Almagest. He used the sex-
agesimal system!’ to get
8 30 17

T =3+—+—>=3——=3.141666...= 3.1416 = 3.14167
60 60 120

This is the most accurate result after Archimedes.

The issue of establishing the irrationality of ® was not settled
until the eighteenth century (as we will see a bit later). However,
it was anticipated by the great Jewish philosopher Maimonides
(1135-1204)'8 in his commentary on the Bible, which states:

You need to know that the ratio of the circle’s diameter to its cir-
cumference is not known and it is never possible to express it pre-
cisely. This is not due to a lack in our knowledge, as the sect called
Gabhaliya [the ignorants] thinks; but it is in its nature that it is
unknown, and there is no way [to know it], but it is known approx-
imately. The geometers have already written essays about this, that
is, to know the ratio of the diameter to the circumference approxi-
mately, and the proofs for this. This approximation, which is
accepted by the educated people, is the ratio of one to three and one
seventh. Every circle, whose diameter is one handbreadth, has in
its circumference three and one seventh handbreadths, approxi-
mately. As it will never be perceived but approximately, they [the
Hebrew sages] took the nearest integer and said that every circle
whose circumference is three fists is one fist wide, and they con-
tented themselves with this for their needs in the religious law.!”

17. A number system using a base of 60, instead of the decimal system that uses the base 10.
18. His actual name was Moses ben Maimon, and he wrote commentaries on the Bible as well

as treatises on logic, mathematics, medicine, law, and theology. He became rabbi of Cairo in 1177.
19. Mishna (Mishna Eruvin 1 5), Mo’ed section (Jerusalem: Me’orot, 1973), pp. 106-107.
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The Chinese Contributions

Meanwhile, in China, independent investigations in geometry paralleled
some of the work in the Western world. Liu Hui in 263 CE also used reg-
ular polygons with increasing numbers of sides to approximate the circle.
However, he used only inscribed circles, while Archimedes used both
inscribed and circumscribed circles. Liu’s approximation of © was

222731416
1,250

and might have been more accurate than Archimedes’ approximation
since he used a decimal number system with a place value system. Also
noteworthy about Liu’s work is that he assumed the area of a circle is half
the circumference times half the diameter. Let us take a closer look at this
assumption. What Liu had assumed can be written symbolically as

%C-%d = %(2717)-%(2)’) =nr’

Recognize this? Yes, this is the familiar formula for the area of a circle.

Yet perhaps the most accurate approximation of n for the next
thousand years was that of the Chinese astronomer and mathemati-
cian Zu Chongzhi (429-500), who through various mysterious
ways? came up with

n= % =3.1415929203539823008849557522123893805

30973451327433628318584070796460176991150442477
87610619469026548672566371681415929203539823008
84955752212389380530973451327433628318584070796
4601769911504424778761061946902654867256637168

which continues by repeating every 112 places.

20 Some say that he may have used Liu’s methods, using regular polygons of even more sides.
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The Beginning of the Renaissance

Our next stop in tracing the history of © must be with Leonardo Pisano
(1170-1250), better known as Fibonacci. Though a citizen in the city-
state of Pisa, he traveled extensively throughout the Middle East and
brought back to Italy a new understanding of and procedure in mathe-
matics. In his famous book, Liber abaci, first published in 1202, he
introduced the Hindu number system that we use today. It was the first
published mention of this system in western Europe. It also contains the
famous rabbit problem that produced the well-known Fibonacci num-
bers.?! In 1223 he wrote Practica geometriae, where, making use of a
regular polygon of ninety-six sides, he computed the value of n to be
1,449 =3.1418181818181818181818181818,

458l

3

which he obtained by taking the average between

1’44(1) =3.1427324312527280663465735486687 ...
458 —
5
and
1,440
— = 3.141056713523994183228308288899...
4585

Although for his time his approximation was not as close as
others, Fibonacci’s contributions to the mathematics development
of western Europe are legendary, especially for the times following
the Dark Ages.

21. The Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, .., where each number after
the first two is the sum of the two previous numbers
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The Sixteenth Century

Throughout the centuries many attempts at approximating the value
of n continued, though the accuracy wavered back and forth. For
example, at the turn of the sixteenth century the famous German
artist and mathematician Albrecht Diirer (1471-1528) used an
approximation for m of 3%: 3.125, far less accurate than other
approximations before that time.

A big change in the computation of m came in 1579, when the
French mathematician Frangois Viete (1540-1603), using the
method developed by the Greeks, considered a regular polygon of
6 +2'®= 393216 sides and calculated © correct to nine decimal
places. He also discovered the first use of an infinite product,? to
determine the value of m.

\ﬁ\/;\/z 2\2" l\g'

Viete calculated the value of & to be between: 3.1415926535
and 3.1415926537. Again, a new milestone in the long history
of m was reached.

The process of letting regular polygons with enormous numbers
of sides approach the dimensions of a circle continued. The next
step forward in the quest to getting more accurate values of © came
in 1593, when the Antwerp physician and mathematician Adriaen

van Roomen,? using a regular polygon of 2% sides (a polygon of
1,073,741,824 sides), calculated = to seventeen decimal places (of
which the first fifteen decimal places were correct).

22. This refers to a product of an infinite number of terms following a given pattern.
23. Sometimes referred to by his Latin name, Adrianus Romanus.
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The Seventeenth Century

The German mathematician Ludolph van Ceulen (1540-1610),
who was intent on finding the true value of &, found its value accu-
rate to twenty decimal places in 1596. His result was calculated
from the perimeters of inscribed and circumscribed regular poly-
gons of 60 « 23 =515,396,075,520 sides.

To achieve this, he had to discover some new theorems to carry
out the calculations. The big step forward in this pursuit for a true
value of m came in 1610, when Ludolph van Ceulen found the value
of m to thirty-five decimal places, using a polygon of 262 =
4,611,686,018,427,387,904 sides. He was so devoted to (or we
might say obsessed with) calculating the value of n and he made
such great strides in that endeavor that, in his honor, & is sometimes
referred to as the Ludolphian number. In addition, upon his death,
his wife had his value of m engraved onto his tombstone in St.
Pieter’s Kerk in Leiden, Holland.

Earlier we mentioned the work of John Wallis (1616-1703).
He was a professor of mathematics at Cambridge and Oxford
universities, and published a book, Arithmetica infinitorum
(1655), where he presented the formula for n (actually %, which
we then merely double to get n):

T _2x2 4x4 6x6 8x8 2nx2n
X oo X X
27 1x3 3x5 5x7 %9 (2n-1)x(2n+1)

This product converges® to the value of 7. That means its
double gets closer and closer to the value of n as the number of
terms increases.

24. A series converges when it approaches a specific value as a limit. That is, the more terms
in the series, the closer it will get to the number to which it converges.
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Wallis’s results were then transformed into a continued fraction®
by William Brouncker (ca. 1620-1684)% by methods that we are not
certain of today. Brouncker obtained the following value of %:

4 12
—=1+ >
/4 3
2+ 5
72
92
24

2+
2+
2+

This procedure to get the value of r is not only tedious but also
requires quite a few terms before it gets close to the value of n that
we know today.

Still, let’s take a look at what this continued fraction can tell us.
First, notice that we can maintain the pattern of the above continued
fraction by taking further squares of successive odd numbers. To
inspect the continued fraction, we look at increasing pieces of the
fraction, each time cutting off the rest of the fraction at a plus sign.
We call these pieces convergents.

The first convergent is 1

The second convergent is

2
i35
272

The third convergent is?’

2 —
'—2=1+ ! o1e 2151 53846053846
)3 hy2 13 13 13

2 2

1+

25. If you are unfamiliar with continued fractions, then see page 146 for a simple introduction

26. William Lord Viscount Brouncker (ca. 1620-1684), who found this continued fraction, was
cofounder and the first president of the Royal Society (1660)

27 The bar over the digits means that the pattern continues indefinitely.
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T
The fourth convergent is
2 —_—
sl 14 IIS=I+%=I+-§—z=%=l38[57894736842105263
2+ ——¢ 2+ +— —
2 LB 29 %
2+
2 2 2

The fifth convergent is

—3%3 =1.1977186311787072243346007604563

. . 4
Since these convergents are approximate values of —, to get

these primitive approximations of , we need to multiply the recip-
rocal of each convergent by 4. Successively, these values for n are

1e4=4

2.4=8 26667
33

204 = 32 = 3.46667

15 15

76 4= 304 =2.8952380
105 105

789. _ 3,156 _ 1,052 — 3.3396825
945 945 315

Notice how we are beginning (albeit rather slowly) to sandwich

in the true value of m; one value is higher, then one is lower, each
time getting closer to the true value:?® 3.14159265358979.... This,
too, was a step closer to the modern methods, even though it didn’t
achieve the same accuracy as the tedious methods of those who
kept constructing regular polygons with an ever-increasing number
of sides until they almost “looked” like a circle.

As we mentioned earlier, it took centuries to obtain greater and

greater accuracy of the value of n. In 1647 the English mathematician
John Wallis designated the ratio of the circumference of a circle to

28. Remember, we will never be able to write the true value of  in decimal notation since it

is always an approximation. The more decimal places we have, the closer we get to the actual value
Here we give an approximation to fourteen-decimal-place accuracy.
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the diameter as % where n probably stood for the periphery (which
is not what 7 stands for today!) and & (delta) stood for the diameter.
Later, in 1685, Wallis used = to represent the periphery and a small
square, O, to represent his ratio ﬁ , using 3.14149... this was his
approximation of today’s m. Gradually, mathematicians approached
the more universal use of & for the ratio it represents today.

Our knowledge increased in 1668 when the Scottish mathe-
matician James Gregory (1638-1675) anticipated Germany’s
greatest mathematician of the seventeenth century, Gottfried Wil-
helm Leibniz,? by five years when he came up with the following
approximation formula for n:

z 1 1 1 1 1

4 35 7 9 11

This is a very rough approximation, since the series converges very
slowly. It would take one hundred thousand terms to get to a five-place
accuracy of .

The Eighteenth Century—When rn Gets Its Name

We now are at about the time when another noteworthy moment in
the history of © occurs. In 1706 the English mathematician William
Jones (1675-1749), in his book, Synopsis palmariorum matheseos,*
used the symbol =t for the first time to actually represent the ratio of
the circumference of a circle to its diameter. However, the true pop-
ularity of the symbol &t to represent this ratio came in 1748, when, as
noted earlier, one of mathematics’ most prolific contributors, the
Swiss mathematician Leonhard Euler (1707-1783), used the symbol
7 in his book Introductio in analysin infinitorum to represent the ratio

29. Leibniz was credited as the coinventor of the calculus in modern times.
30. “A New Introduction to Mathematics”
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of the circumference of a circle to its diameter. A brilliant mathemati-
cian with an uncanny memory and ability to do complex calculations,
Euler developed numerous methods for calculating nt, some of which
approached the true value of © more quickly (that is, in fewer steps)
than procedures developed by his predecessors. Here he calculated &t
to 126-place accuracy. One formula that he used to calculate n was
the first in a group of series giving successive powers of . The series
below is particularly interesting, since it is a series created by taking

the squares of the terms in a harmonic series.’!

1 1 1 1

s Tttt

There are many theorems named after Euler, since he wrote
profusely in almost all areas of mathematics, yet the most famous
formula (if there actually is one) bearing his name is the relation-
ship that ties together a number of seemingly unrelated concepts. It
is e* + 1 = 0, where e is the base of the natural logarithms,** and i
is the imaginary unit of the complex numbers (i = V-1 ). In this for-
mula we have five most important numbers: 0, 1, e, i, and & !3* This
formula prompted the famous German mathematician (Christian)
Felix Klein (1849-1925) to proclaim: “All Analysis Lies Here!”

31. Aharmonic sequence is formed by taking the reciprocals of the terms of an anthmetic sequence
(one with a common difference between terms). The simplest arithmetic sequence is 1, 2, 3,4, 5,6, . . .

The related harmonic series is:

The name “harmonic” comes from the fact that a set of strings of the exact same type and with the
same torsion, yet of lengths proportional to the terms of a harmonic sequence, when strummed together
will produce a harmonic tone.

32. More about this unusual relationship is presented in Herbert Hauptmann’s afterword (p. 284).

33. The power to which a base must be raised to equal a given number. For example, given the base
10, the logarithm of 16 is (approximately) 1.2041 because 101.2041 equals (approximately) 16. Both nat-
ural loganthms (to the base e, which is approximately 2 71828) and common logarithms (to the base 10)
are used in computer programming. The natural logarithm e = lim (I + %) =2718281828459045

34. We discussed this formula in chapter 1 (page 30), although it was given in the form ¢” = -1, and
made some mention of its accolades.
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Approaching the Nineteenth Century

The question about what kind of number is n began to consume
mathematicians. With each attempt to get more place values for r,
there was always the hope that a pattern would emerge and that
there would be a period of digits repeating. This would have then
made m a rational number. This was not to happen. In 1794 the
French mathematician Adrien Marie Legendre (1752-1833) wrote
a book entitled Elements de Géométrie in which he proved that 12
is irrational. It was the first use of the symbol & in a French book.
In 1806 he also proved that = is irrational. We know that Aristotle
(384-322 BCE) suspected n was an irrational number. But his spec-
ulation lasted more than two millennia before being proved correct.
Although the great German mathematician Carl Friedrich
Gauss (1777-1855) also weighed in with calculations of =, he
employed Zacharias Dahse (1824-1861), a lightning-fast mental
calculator, to assist with his research. Dahse, using the formula

e ol g
— = arctan| — |+arctan| — |+ arctan| —
4 2 5 8

found 7 correct to two hundred decimal places.> Dahse became a
legend with his calculating ability. It is believed that he did these cal-
culations mentally. He was known to be able to multiply in his head
two eight-digit numbers in forty-five seconds. Multiplying two forty-
digit numbers required forty minutes of mental calculation time, and he
was able to mentally multiply two one-hundred-digit numbers in eight
hours and forty-five minutes. In fairness to Gauss, it should be said that
he, too, was a marvelous calculator. It is believed that Gauss’s calcu-
lating talent enabled him to see patterns and make many mathematical
conjectures that he then later proved, establishing them as theorems.

35 This formula was developed by the Viennese mathematician L. K. Schulz von Strassnitzky.
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The pursuit of an accurate value for m continued. Some efforts
made slight progress by increasing the number of correct decimal
places for m, while others claimed to have done so but upon further
examination had some errors. In 1847 Thomas Clausen (1801-1855),
a German mathematician, calculated nt correct to 248 decimal places.
Then in 1853 William Rutherford, an Englishman, extended this to 440
decimal places. One of Rutherford’s students, William Shanks
(1812-1882), extended the value of t to 707 decimal places in 1874.
However, there was an error in the 528th place, which was first
detected in 1946 with the aid of an electronic computer—using seventy
hours of running time! Shanks required fifteen years for his calculation.

Entering the Twentieth Century

As the history of n progresses, we must take note of the work of
Carl Louis Ferdinand Lindemann (1852-1939), a German mathe-
matician who proved that © was not only not a rational number, but,
in fact, it is a transcendental number.3® As noted earlier, with the
establishment that m was a transcendental number, Lindemann
finally put to rest that ancient problem of finding the length of the
side of a square whose area is equal to that of a given circle, when
he proved that it was impossible to be done.

In chapter 1 we discussed Buffon’s needle technique as a method of
calculating the value of n. This seemingly unrelated field of probability
seemed to relate to &. It is truly astonishing that this geometric ratio, T,
would be related to a situation in probability. In the same way, in 1904,
R. Chartres showed that the probability that two randomly selected pos-

36. A transcendental number is one that cannot be the root of an algebraic equation with
rational coefficients. For example, 2 is an irrational number but not a transcendental number; it is
the root of the equation x? — 2 = 0. On the other hand, e is a transcendental number (see note 29)



The History of © 71

itive integers are relatively prime?’ is ni This might be even more
amazing, since at least with Buffon’s needle there is something physical
going on: the placement of a needle and parallel lines. Here there is
nothing geometric, just number theory.

In 1914 the Indian mathematical genius Srinivasa Ramanujan
(1882-1920),%8 established many formulas for calculating the value
of m. Some were very complicated and had to wait for the
advent of the computer to be appropriately used. One such is

1_ 8 i(4n)!(1,103+26,390n)
T 98015 (n1)* 396"

Yet a much simpler formula that Ramanujan produced to calcu-
late the value of & was

1 1
19 + (2 4
o2 4+ 10 =(81+ 361)“ =( ’143)4 — 3.141592652...
2 2 2

which is correct to only eight decimal places, but is relatively easy
to calculate.®

In 1946 D. F. Ferguson (England) discovered an error, as
noted earlier, in William Shanks’s value of n in the 528th decimal
place. In January 1947 he produced a value for n correct to 710
places. Later that month, John W. Wrench Jr., an American, pub-
lished a value of & to 808 decimal places, but soon thereafter Fer-
guson found an error in the 723rd decimal place. In January 1948
the two collaborated on a correct value of n to 808 decimal places
with the help of a desk calculator. Still using only a desk calcu-
lator, the following year John W. Wrench Jr. and Levi B. Smith,
American mathematicians, extended this to 1,120 decimal places.

37. Two numbers are said to be relatively prime if their only common factor is 1 For example,
15 and 17 are relatively prime, since their only common factor is 1.

38. More about him in chapter 3.

39 All that needs to be done with a simple calculator is to take the square root of the square root of

2,143 . 2,143
TR that is, e
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The Computer Enters the Story of ©

In 1949, with the development of the electronic computer, the race for
the most decimal place values for © took on a fervor. Now computing
time was no longer a factor. We were not limited to human limitations.
Using seventy hours of computer time, the brilliant mathematicians
John von Neumann, George Reitwiesner, and N. C. Metropolis calcu-
lated the value of «t to 2,037 decimal places, using an ENIAC computer.

And so the race was on. To inspect each of the methods used is
far beyond the scope of this book. Yet we can observe the gradual
progress with the help of the following table:#°

Year Mathematician Number of place accuracy of n Time for calculation
1954 S C Nicholson & J Jeenel 3,092 13 minutes
1954 G E Felton 7,480 33 hours
(Generated 10,021 places but only 7,480 were correct due to machine error )

1958 Frangois Genuys 10,000 100 minutes
1959 Frangois Genuys 16,167 4 hours, 20 minutes
1961 Daniel Shanks*' & John W Wrench Jr

100,265 8 hours, 43 minutes
1966 M Jean Guilloud & J Filliatre 250,000 41 hours, 55 minutes
1967 M Jean Guilloud & Michele Dichampt

500,000 44 hours, 45 minutes
1973 M Jean Guilloud & Martine Bouyer 1,001,250 23 hours, 18 minutes
1981 Kazunon Miyoshi & Kazuhika Nakayama

2,000,036 137 hours, 20 minutes
1982 Yoshiaki Tamura & Yasumasa Kanada

8,388,576 6 hours, 48 minutes
1982 Yoshiaki Tamura & Yasumasa Kanada

16,777,206 Less than 30 hours
1988 Yoshiaki Tamura & Yasumasa Kanada

201,326,551 About 6 hours
1989 Gregory V & David V Chudnovsky 1,011,196,691 Not known
1992 Gregory V & David V Chudnovsky 2,260,321,336 Not known
1994 Gregory V & David V Chudnovsky 4,044,000,000 Not known
1995 Takahashi & Yasumasa Kanada 6,442,450,938 Not known
1997 Takahashi & Yasumasa Kanada 51,539,600,000 About 29 hours
1999 Takahashi & Yasumasa Kanada 206,158,430,000 Not known
2002 Yasumasa Kanada 1,241,100,000,000 About 600 hours

40. For a more complete list of the development of the value of T, see the table on pages 75-77.
41. Daniel Shanks is no relation to William Shanks.
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The race for the most number of decimal places for n entered
the billions with the Chudnovsky brothers, David and Gregory.
Their story is a bit unusual. They emigrated to the United States
from the Soviet Union in 1978 after getting doctorates in mathe-
matics from the Ukrainian Academy of Sciences. They took an
apartment in Manhattan and rented two supercomputers to do their
calculations—bent on getting the most accurate value for n. There
were some problems along the way. Gregory, the younger by five
years, had myasthenia gravis, an autoimmune disorder of the mus-
cles, and had to stay in bed most of the time. He did most of his
work from his bed. Both brothers were married and for a time lived
off the earnings of their respective wives, while they pursued their
mathematical challenges. The expense of the supercomputers
forced them eventually to build their own—taking up much of their
apartment. In 1981 things got a bit easier when Gregory won a
MacArthur Foundation fellowship in mathematics. This provided
much-needed medical insurance and solved their immediate finan-
cial problems. Gregory continued to work from his bed, writing
mathematical formulas and pursuing the value of &, while also
breaking ground in a number of other areas of mathematics. This is
just one of many stories to be found in the rich history of «.

There are many unsolved problems in mathematics that beg for
solution in addition to the pursuit of ©. Perhaps one of the simplest
to mention is known as Goldbach’s conjecture. It states that any
even number greater than 2 can be expressed as the sum of two
prime numbers. This conjecture has plagued mathematicians for
over 250 years. Despite the fact that using computers we have been
able to show that the conjecture holds true for all even numbers so
far tested, we have not yet been able to come up with a proof that
will show it is true for all even numbers greater than 2. In a like
way, mathematicians have been driven to try to calculate & to ever-
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greater accuracy. Of course, from the point of view of usable accu-
racy, these incredibly long decimal expansions may seem unneces-
sary. However, as you will later see, there can be a use for these
decimal expansions, namely, as a table of random numbers, which
can aid in statistical sampling.*?

As for continuously using computers to establish a greater
accuracy for m, it has now gotten to the point where computer sci-
entists are no longer just interested in pushing for greater accuracy
for the value of &; rather, they do this to test their computers. How
fast, how accurately, and how far can a new computer or computer
program calculate the value of ©? Mathematicians and n enthusiasts
are always looking to extend our knowledge of n. They are inter-
ested both in extending the number of known decimal places and in
the cleverness of the program or algorithm used to generate these
record-breaking attempts. Computer scientists still find the algo-
rithms for the calculation of = ideal tools for testing high-powered
supercomputers. So, how far will the next level of accuracy take us
in our knowledge of n? And, of course, how much computer time
will be required? While these questions plague the computer scien-
tists, m enthusiasts are more interested in the product. Will greater
accuracy for the m approximation (now already over 1.24 trillion
decimal places) reveal new ideas about n? And will there be more-
elegant (and efficient) algorithms discovered for establishing these
approximations of n? Both groups of scientists push on, though
with different, albeit complementary goals.

42. This many not be an ideal table of random numbers since, as we mentioned earlier, the fre-
quency of the digits is not consistent over equal periods
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Here is a summary of the history of the pursuit of the value of n:

Table of computation of Pi from 2000 BCE to the Present

Who calculated ©t When Number of decimal Value
place accuracy found
Babylonians 20007 BCE 1 3125=3+1/8
Egyptians 2000” BCE 1 316045 = 4(%)2
China 1200? BCE 1 3
Bible (1 Kings 7 23)* 5507 BCE 1 @) 3 (3 1416)
Archimedes 250? BCE 3 31418
Vitruvius 15 BCE 1 3125
Hon Han Shu 130 CE 1 31622 =410
Ptolemy 150 3 3 14166
Wang Fau 250? 1 3155555 = %
Liu Hui 263 5 3 14159
Siddhanta 380 3 31416
Tsu Ch’ung Chi 4807 7 31415926 = %
Aryabhata 499 4 314156 = 2(2)&3)(2)
Brahmagupta 6407 1 3162277 = 10
Al-Khowarizmi 800 4 31416
Fibonacci 1220 3 3141818

Al-Kashi 1430 12
3 1415926535898732
Otho 1573 6 31415929
Viéte 1593 9 31415926536
Romanus 1593 15 3 141592653589793

van Ceulen 1596 20
3 14159265358979323846

van Ceulen 1615 35

3 1415926535897932384626433832795029
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Newton

Sharp

Seki Kowa
Machin

De Lagny

Takebe

Kamata
Matsunaga

Von Vega
Rutherford
Strassnitzky / Dase
Clausen

Lehmann
Rutherford
William Shanks
Ferguson

Ferguson

Ferguson and Wrench

Smith and Wrench

Reitwiesner et al. (ENIAC)

Nicholson and Jeenel
Felton

Genuys

Felton

Genuys

Daniel Shanks and Wrench

Guilloud and Filliatre

Guilloud and Dichampt

Guilloud and Bouyer
Miyoshi and Kanada

Guilloud

1665

1699
17007
1706
1719
1723
17307
1739
1794
1824
1844
1847
1853
1853
1873
1946
Jan 1947
Sep 1947
1949
1949
1954
1957
Jan 1958
May 1958
1959
1961
1966
1967
1973
1981

1982

127

41

25

50

140

208

200

248

261

440

707

620

710

808
1,120
2,037
3,092
7,480
10,000
10,021
16,167
100,265

250,000

500,000
1,001,250
2,000,036

2,000,050

3 1415926535897932

(only 112 correct)

(only 136 correct)

(only 152 correct)

(only 527 correct)



Tamura

Tamura and Kanada
Tamura and Kanada
Kanada, Yoshino, and Tamura
Ushiro and Kanada
Gosper

Bailey

Kanada and Tamura
Kanada and Tamura
Kanada, Tamura, Kubo et al
Kanada and Tamura
Chudnovskys
Chudnovskys

Kanada and Tamura
Chudnovskys

Kanada and Tamura
Chudnovskys
Chudnovskys
Takahashi and Kanada
Takahashi and Kanada
Takahashi and Kanada
Takahashi and Kanada
Takahashi and Kanada

Takahashi and Kanada

Kanada and nine-person team at University of Tokyo

The History of

1982

1982

1982

1982

Oct 1983
Oct 1985
Jan 1986
Sep 1986
Oct 1986
Jan 1987
Jan 1988
May 1989
Jun 1989
Jul 1989
Aug 1989
Nov 1989
Aug 1991
May 1994
Jun 1995
Aug 1995
Sep 1995
Jun 1997
Apr 1999

Sep 1999

Sep 2002

43. Using gematria—see chapter 1

2,097,144
4,194,288
8,388,576
16,777,206
10,013,395
17,526,200
29,360,111
33,554,414
67,108,839
134,217,700
201,326,551
480,000,000
525,229,270
536,870,898
1,011,196,691
1.073,740,799
2,260,000,000
4,044,000,000
3,221,225,466
4,294,967,286
6,442,450,938
51,539,600,000
68,719,470,000

206,158,430,000

1,241,100,000,000






Chapter 3

Calculating
the Value of «?

Up to now we have described nm and mentioned ways in which
attempts have been made to calculate its value. They varied from
highly intelligent (say, ingenious) guesses by mathematicians, to
attempts at performing calculations that were later proved impossible
(i.e., squaring the circle), to carefully planned constructions that
would yield the value of m if carried out far enough and carefully
enough. Some methods of calculating the value of m, strangely
enough, relied on probability, or in one case on mysterious insights.
Here we will provide you with a variety of methods for calculating the
value of m. We chose those that should be easily understood by the
general reader. Where a concept is used that may be a bit off the beaten
path, or simply unfamiliar to some, we provide some background
information. We will be presenting the classical attempts, rather than
those used in the more recent computer-driven methods. We begin

79
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with one of the most famous classical methods, by one of the most
gifted mathematicians in the history of mathematics, Archimedes.

Archimedes’ Method for Finding the Value of =

Perhaps the easiest way to begin to calculate the value of n was devel-
oped by Archimedes. It is a method that can appeal to one’s intuition. He
noticed that as the number of sides of a regular polygon increases, while
keeping the radius or the apothem' constant, the limiting value of the
perimeter is the circumference of a circle. That is, suppose we take the
first few regular polygons (an equilateral triangle, a square, a regular
pentagon, and a regular hexagon) and inscribe them in the same-size
circle. As the number of sides of the regular polygon increases, the
perimeter of the polygon gets closer and closer to the circumference (i.e.,
perimeter) of the circle. Remember that the circumscribed circle must
contain each of the vertices of the polygon. Here is what it can look like.

A

Fig. 3-1a Fig. 3-1b

Fig. 3-1c Fig. 3-1d

1 The apothem is the segment from the center of a regular polygon to the midpoint of one of
its sides. It is perpendicular to the side.
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This may be easier to see when the regular polygon’s sides
increase further so that it becomes a dodecagon (which has twelve
sides). We can actually calculate the increasing perimeters and see
them gradually approach the circumference of the circle.

Fig. 3-2

Let’s take the hexagon as our example of a “general polygon.”
From this we will then generalize to polygons of many more (or
fewer) sides. We begin with a regular hexagon inscribed in a circle
of radius % The measure of ZAOB is one-sixth of a complete rev-
olution of 360°, or 60°. Since OK L AB at K, BK = AK = a.
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We seek to find the perimeter of the hexagon, when we know
the length of the radius [%) and the measure of

ZAOK = %(60°) =30°
Using the trigonometric function sine,> we get

ZAOK =sin30°=—=2a

V= | Q

Since sin 30°= %, then 2a=%, and a=%, The perimeter of the

hexagon is then 12 times a, which equals 3.

Let’s generalize this for any regular polygon of n sides.

. 1,360° 180

2 n n

Therefore, for the general regular polygon of n sides
180°
n

sin

2a

The perimeter of the n-sided regular polygon is then n times 2aq,
which makes this perimeter equal to

180°
n

nsin

We can then take various values of n and compute the perimeter of
the regular polygon whose circumscribed circle has a radius of %

2. The sine function is defined for a right triangle as the ratio of the side opposite the angle in
question and the hypotenuse (the side opposite the nght angle).
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We shall work out the first few examples here and then provide
the results of others in a table.

When n = 3:

(e}

0 = 3sin60° = 3(0.86602540378443864676372317075294)

3sin

=2.5980762113533159402911695122588

When n = 4:

(o)

180
4sin =45in45° = 4(0.70710678118654752440084436210485)

=2.8284271247461900976033774484194

Whenn =35:

o

Ssin 180 = 5sin36° = 5(0.58778525229247312916870595463907)

=2.9389262614623656458435297731954

When n = 6:

o

6sin 180 = 6sin30° = 6(0.50000000000000000000000000000000)

= 3.00000000000000000000000000000000
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We just calculated the first four entries in the table below and
here provide you with the remaining ones.

n Perimeter of inscribed polygon of n sides
3 2.5980762113533159402911695122588...
4 2.8284271247461900976033774484194...
5 2.9389262614623656458435297731954...
6 3.0000000000000000000000000000000. ..
7 3.0371861738229068433303783299385...
8 3.0614674589207181738276798722432...
9 3.0781812899310185973968965321403...
10 3.0901699437494742410229341718282...
11 3.0990581252557266748255970688128...
12 3.1058285412302491481867860514886...
13 3.1111036357382509729337984413828...
14 3.1152930753884016600446359029551...
15 3.1186753622663900565261342660769...
24 3.1326286132812381971617494694917....
36 3.137606738915694248090313750149...
54 3.1398207611656947410923929097419...
72 3.140595890304191984286221559116...
90 3.14095470322508744813956634628...
120 3.1412337969447783132734022664935. ..
180 3.1414331587110323074954161329369...
250 3.1415099708381519785686472871987...
500 3.1415719827794756248676550789799. ..
1,000 3.1415874858795633519332270354959...

10,000 3.141592601912665692979346479289...
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Now compare this 10,000-sided regular polygon (our last entry)
to the value of r that we already know. Remember it is inscribed in
the circle with radius % This 10,000-sided polygon is optically
quite indistinguishable from the circle (obviously, without magnifi-
cation enhancements). The circumference of the circumscribed
circle of radius % is 2@r = 272:(%): TT.

Look at the known value of n for comparison.

n =3.1415926535 8979323846 2643383279 5028841971
6939937510 5820974944...

Up to the seventh decimal place, the approximation with a 10,000-
sided regular polygon perimeter is correct. If we were to calculate the
perimeter of a regular polygon of 100,000 sides, we would get an even
closer approximation. The perimeter of a regular polygon of 100,000
sides is 3.1415926530730219604831480207531..., which approxi-
mates © correct to nine decimal places.

Archimedes (obviously) did not have the luxury of using elec-
tronic (or even mechanical) calculating devices to assist him in his
calculations.? He also did not have the facility brought about by the
place value system (such as our decimal system), nor did he have
the use of trigonometry available to him. Yet he still used a 96-sided
regular polygon. He saw the circle as the limiting figure of an
inscribed circle as well as the circumcircle we just used above. By
taking the average of the perimeters of each pair of circles of n-
sided regular polygons, he would “sandwich in” the perimeter of
the circle, which in the case of a circle with radius of % Is T.

3. The mechanical calculator was invented by four mathematicians over a rather wide stretch of
time. Wilhelm Schickardt (1592-1635), a German mathematician, built the first digital calculator in
1623. Blaise Pascaal (1623-1662) built the first mechanical calculating machine in 1642 for his
father, who was a tax collector. The machine, called Pascaline, was commercially sold after 1645.
Gottfried Wilhelm Leibniz (1646-1716) developed a mechanical calculator in 1673 that failed during
a demonstration in London but nonetheless, because of the spectacular concept involved, was
accepted in the Royal Society. The English mathematician Charles Babbage (1792-1871), despite
devoting a greater part of his professional life to its development, never reached a completed product.
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Let us now repeat the above exercise with the polygon circum-
scribed about the circle, or, put another way, where the circle of
radius % is inscribed in the polygon (i.e., the circle must be tangent
to each side of the polygon). As before, we will consider regular
polygons with successively greater numbers of sides, each with our
given circle inscribed.

A B C
A : T | /_— \\\ 1
| \
Y
c* lb B K o '
Fig. 3-4a Fig. 3-4b
. A
y / .
£, / . /
\ / A S/
5 . \— / P —— /n 'y
Fig. 3-5 Fig. 3-6

Notice how gradually the perimeter of the polygon appears to
get closer and closer to the circumference of the circle.

He began his work in 1812 and worked for decades on the project. In the end, the lack of precision
tools prevented him from achieving his “analytical engine” in 1833. His work was first realized in
the form of a working machine in 1944 when the IBM Corporation and Harvard University collabo-
rated to produce the Automatic Sequence Controlled Calculator.
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This time we will consider a regular pentagon circumscribed
about our circle of radius %as our first polygon to study. Then we
will generalize our procedure and extend it to many others.

Fig. 3-7

Our objective is to find the perimeter of the pentagon with a
side of 2a. We know that

tan ZAOK = ——4and m ZAOB = 72°
OK

so that

m/AOK =36° , while OK = %

Therefore,

a= %tan36° = %(0.72654252800536088589546675748062)

=0.36327126400268044294773337874031

4. The tangent function is defined for a right tniangle as the ratio of the side opposite the angle
being considered to the side adjacent to this angle.
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Thus the perimeter of the pentagon is 10 times a, or about
3.6327126400268044294773337874031 (this is found by taking 5
times 2a, or about 3.6327), not yet a very close approximation of x.
The circumference of the circle is 27tr = 271'(%]: TT.

In the general case of a regular polygon of n sides

mAAOK——l--36O 180
2 n n
From the example of the pentagon, tan ZAOK = . It fol-

lows that
a=OKtan ZAOK = ; «tan °-

The perimeter of the polygon is then

180° 180°
= ntan
n n

ne2a= n-2-l-tan
2

As before, we will calculate the perimeters of the various polygons,
this time, though, circumscribed about our circle with radius %

We already have the calculated perimeter for the pentagon, so
we will do the calculation for the hexagon now.

When n = 6:

180° 180° NE)

=6etan «tan30° = 6. 3 =3.4641

netan

n
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For more than four decimal places we get the following:

n Perimeter of circumscribed polygon of n sides
3 5.1961524227066318805823390245176...
4 4.0000000000000000000000000000000...
5 3.6327126400268044294773337874031...
6 3.4641016151377545870548926830117...
7 3.3710223316527005103251364713988...
8 3.3137084989847603904135097936776. ..
9 3.2757321083958212521594309449915...
10 3.2491969623290632615587141221513...
11 3.2298914223220338542066829685944...
12 3.2153903091734724776706439019295...
13 3.2042122194157076473003149216291....
14 3.1954086414620991330865590688542...
15 3.1883484250503318788938749085512...
24 3.1596599420975004833166349778332...
36 3.1495918869332641879926720996586...
54 3.1451418433791039391493421086004...
72 3.1435878894128684595626030399174...
90 3.1428692542572957450362363196353...
96 3.1427145996453682981688590937721 ...
120 3.1423105883024314667236592753428...
180 3.141911687079165437723201139551...
250 3.1417580308448944353707690613384...
500 3.1416339959448860645952957694732...
1,000 3.1416029890561561260413432901054...

10,000 3.1415927569440529197246707719118...
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Again you will notice how the more sides the polygon has, the
closer its perimeter gets to the circumference of the circle—which
we now know is m.

Archimedes, as we said before, saw the inscribed and the cir-
cumscribed polygons “sandwiching in” the circle, as seen below by
the inscribed and circumscribed dodecagons (n = 12).

He essentially suggested taking the average of the two perime-
ters for each type of polygon to get a better approximation of .

n Perimeter of inscribed polygon Perimeter of circumscribed Average of the perimeters of the

of n sides

polygon of n sides

inscribed and circumscribed
polygons of n sides

2 5980762113533159402911695122588

51961524227066318805823390245176

3 8971143170299739104367542683875

4 2 ¥284271247461900976033774484194 4 0000000000000000000000000000000 34142135623730950488016887242095
s 2 9389262614623656458435297731954 3 6327126400268044294773337874031 3 2858194507445850376604 31780299
0 3 0000000000000000000000000000000 34641016151377545870548926830117 3 2320508075688772935274463415055
7 30371861738229068433303783299385 33710223316527005103251364713988 3 204104252737803676827757400668
8 30614674589207181738276798722432 3 3137084989847603904 135097936776 3 18758797895273928212059483296

9 30781812899310185973968965321403 32757321083958212521594309449915 3 1769566991634199247781637385655
10 30901699437494742410229341718282 32491969623290632615587141221513 3 1696834530392687512908241469895
" 30990581252557266748255970688128 32298914223220338542066829685944 3 164474773788880264516140018703
12 3 1058285412302491481867860514886 321539030917347247767064 39019295 316060942520 18608 129287149767085
13 3 11110363573825097293379844 13828 32042122194157076473003149216291 3 1576579275769793101 170566815055
14 3 11529307538840166(0044635902955 1 319540864 14620991330865590688542 3 1553508584252503965655974859045
15 3 1186753622663900565261 342660769 3 1883484250503318788938749085512 3 1535118936583609677 100045873135
24 3 1326286132812381971617494694917 3 1596599420975004833166349778332 3 146144277689369340239192223662
36 3 137606738915694248090313750149 3 149591886933264 1879926720996586 3 14359931292447921804 14929249035
s4 3 13982076116569474109239290974 19 3 1451418433791039391493421086004 3 1424813022723993401208675091705
72 3 140595890304 191984286221559116 3 1435878894128684595626030399174 3 1420918898585302219244122995165
90 3 1409547032250874481 3956634628 3 1428692542572957450362303196353 3 1419119787411915965879013329575
96 3 1410319508905096381113529264597 3 14271459964 5368298 1688590937721 3 1418732752679389681401060101155
120 3 1412337969447783132734022664935 3 1423105883024314667236592753428 3 1417721926236048899985307709175
180 3 1414331587110323074954161329369 3 141911687079165437723201139551 3 141672422895098872609 3086362435
250 3 1415099708381519785686472871987 3 1417580308448944353707690613384 3 14163400084 1523206969708174268
500 3 1415719827794756248676550789799 3 141633995944886()645952957694732 3 141602989362180834731475424226
1000 3 1415874858795633519332270354959 3 1416029890561 561260413432901054 3 1415952374678597389872851628
10000 3 141592601912665692979346479289 3 1415927569440529197246707719118 3 1415926794283593063520086256
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The average of the two perimeters (the right-hand column) is
closest to the value of & for each type of polygon. When Archimedes
did these calculations, he didn’t take as many examples as we did
here. He began with two regular hexagons, then doubled the number
of sides, using two dodecagons (12-sided polygons), then used two
24-gons,’ then two 48-gons, and then two 96-gons.

Although his calculations were probably not as accurate as ours
are, and we do not have a record of how he did his calculations, he
did conclude from the 96-gon that the ratio of the circumference of
a circle to its diameter—which is n—is greater than 3% and less

than 3%. We can write this symbolically as

3E<7t<3l
71 7

For comparison to the above, this is

3.1408450704225352112676056338028... <t <
3.1428571428571428571428571428571...

We have come a long way since Archimedes’ ingenious methods.
As we noted earlier, we can now calculate n to many more places than
ever thought possible; however, this “primitive” method gives much
intuitive insight into what this ratio that n represents really is.

A Reverse Method to Archimedes by Cusanus

Archimedes had used inscribed and circumscribed regular polygons
within and about a given circle, each time increasing the number of
sides. The argument was that as the number of sides of the polygons

5 24-gon is a short way of referring to a 24-sided polygon.
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increased, the circumference of the circle, “sandwiched” between the
two polygons, was the limiting value of the polygon.

An analogous method developed by Nicholas of Cusa
(1401-1464) has us ‘“sandwiching” in regular polygons with
increasing numbers of sides by inscribed and circumscribed circles.
Nicholas of Cusa® took his name from his hometown of Cues
(today Kues) on the Mosel River in Germany. By today’s assess-
ments, he is considered one of the pioneering German thinkers in
the transition from the Middle Ages to modern times, yet he was
not too well known as a mathematician. He was better known for
his substantial career in the church. He became a cardinal in 1488
and was bishop of Brixen (northern Italy) and a governor (or vicar
general) of Rome. As a mathematician, he made ill-fated attempts
to square the circle’ and to trisect the general angle,® both of which
we now know are impossible. As with many mathematicians fasci-
nated with one of the three “famous problems of antiquity,” namely,
squaring the circle, Cusanus’s attempts led him to a fine approxima-
tion of m. Let’s take a look at what Cusanus achieved in these
attempts. We will demonstrate this here, but in more modern terms.

In 1450 Cusanus nested a given regular polygon with the fixed
perimeter 2 with inscribed and circumscribed circles. He used a
sequence of the regular n-gons (n = 4, 8, 16, 32, ...).

6. Sometimes referred to by his Latin name, Cusanus.

7 One of the three famous problems of antiquity—no longer a problem today—is how to “square
a circle.” That means how to construct (with only an unmarked straightedge and a pair of compasses)
the side length of a square equal in area to a given circle. Today, we know this to be impossible.

8. Another of the three famous problems of antiquity—no longer a problem today—is how to “tri-
sect an angle.” That means how to construct (with only an unmarked straightedge and a pair of compasses)
angle trisectors of a general angle—not any specific number of degrees, for it would be possible for some
special angles, such as a right angle Today, we know this general angle trisection to be impossible
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Carcum

o]

>

Fig. 3-9
Let’s begin as Cusanus did by starting with a square (which
may, of course, be referred to as a regular 4-gon). We will call the
perimeter of the square p,. Since each side of the square is a,= %,
then p,= 4ea,=2.
Consider the inscribed circle with circumference C, and the

circumscribed circle with circumference C of the square pic-

circum
tured above. The radius of the inscribed circle is

=% -L_0os
2 4
The radius of the circumscribed circle is
2
2
ro= 2+ ("2—4) = l{;— ~0.3535533905

We can plainly see that the perimeter of the square is somewhere
between the circumferences of the two circles, so we can compare the
perimeter, p,, and the two circumferences, C, and C to get

circum’

C.<p,<C

circum

or 21th4<2<21tr4

Dividing all terms by 2 gives us

Tth4<]<1tr4
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Then dividing all terms by n we get

1
h,<—-<r
4> 4

Taking the reciprocal values of each of the terms reverses the

inequality, so we get
1 1

ST
Since r, = %2, it follows that 7=~ 2.82842713 and ; = 4. There-
fore 2.82842713 < nt <4, a rather rough approximation for the value
of m. But wait, as we increase the number of sides of the regular
polygon, the estimates should get better.

The next approximation was done by doubling the number of
sides of the regular polygon we just used to get a regular octagon.
Cusanus considered a regular 8-gon with hg as the radius of the
inscribed circle with circumference C, and ry as the radius of the

circumscribed circle with circumference C circum”

Since each side is a;= %, the perimeter, py, of the regular 8-gon

isp;=8°a,=2.
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mZAMB = 45°, therefore, mZAMC = 22.5°
ag

tan ZAMC =tan 22.5° =2 —1= 2 = % 9
hy  2h

This can then be transformed into the following equation:

1
ag _ 4 1 ___\/5+1

10
_ZWAAMC_Z.(\/E—I)_S(\/E—I) = 0.3017766952

hy

With the Pythagorean theorem, r” = h; + (“—2‘)2, we get

For the perimeter, p,, and circumferences, C, and C we get

circum’

C,<pg<C

circum

or 21th8<2<21tr8

Dividing both sides by 2, it follows that Thg < 1 <mrg, which, when
dividing each term by , yields hy <> < 7.

9. Tan 22.5° = v2 - 1 can be obtamed by applying a theorem from the high school course to an isosceles right
tnangle with one of its base angles bisected to get 22.5°
The theorem states that the angle bisector of a tnangle divides the side to which it is drawn proportionally to
the two adjacent sides Hence, 4
V2 1

1-x z
= =, 2=1-x,andx= =
N . then x x, and x NPy

Rationalizing the denomunator gives us

R Y/ T 5 -1
= T *

c B

¥ 241
10. This was obtained by rationalizing the denominator, that is, by multiplying by 1 in the form of g: n
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Again, taking the reciprocal of each term reverses the inequality
to give us
1 1

—<T<—
K

That means for the reciprocal values

}x= 321642
= 42— /2 =~3.061467458

and ;=8 (72 - 1) = 3.313708498

We finally have a more accurate value range for m:
3.061467458 < m < 3.313708498

We will now take a giant leap to the general case, where we will
try to sandwich in the value of n. This may be a bit complicated for
the reader no longer familiar with some of the intricacies of high
school mathematics, yet it is the conclusion of this generalization
that is of greater importance than the process.

For the general case, A is the radius of the inscribed circle with
circumference C,, and r, is the radius of the circumscribed circle
with circumference C of a regular n-gon (n =4, 8, 16, 32, ...).

circum

We have established above that

] 1
—<T<—
r

In this way one can generalize nested intervals for m, if one
iteratively'' determines the radii of the inscribed and circum-
scribed circles with increasing numbers of sides of the regular n-

11 Iteration is a computational procedure in which the desired result is approached through a
repeated cycle of operations, each of which more closely approximates the desired result
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gon (with the perimeter 2).
How did Cusanus get his iteration method? To explain this, we
look again at a regular n-gon (n =4, 8, 16, 32, ...):

\ Chin

C2nin

cn circum

Fig. 3-11
We assume AB = a,, MA = MB = r,, and MH = h,. After dou-
bling the number of sides of the polygon, we get the regular 2n-gon.
Here P is the midpoint of the arc ;\73’, and X and Y are the midpoints
of the sides AP and BPin the triangle AABP. Therefore, XY = if.
XY is the side of the regular 2n-gon with the perimeter 2 and the

center M. It follows that MP=MA =r ,MX=MY =r, ,and MQ =

h,,, (compare the cases where n =4 and 2n = 8 in the above figure).
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Because Q is the midpoint of the segmentFi—I—, we have

r,th,
hzn -_ -2— .

In the right triangle AMPX it follows that MX?> = MQ * MP."?
This may be written as r., =r,+h,,, which then leads to

r, = \r,*h

2n 2n

To generate the values for the rest of the n-gons (where n =
16, 32, 64, etc.), we can use the general case. We use the fol-
lowing general terms:

h,=—r,=— (start values)
4 4
r+h . .
h,, = %;rh =Jr,*h,, (iteration terms)
These yield the following table of values:
| 1

n hn rn r, h,
4 025 03535533905 2828427124 4
8 03017766952 03266407412 3061467458 3313708498
16 03142087182 03203644309 3121445152 3182597878
32 03172865746 03188217886 3 136548490 3151724907
64 03180541816 03184377538 3140331156 3144118385
128 03182459677 03183418463 3 141277250 3142223629
256 03182939070 03183178758 3141513801 3 141750369
512 03183058914 03183118835 3141572940 3141632080
1024 03183088874 03183103855 3141587725 3 141602510
2048 0.3183096365 03183100110 3141591421 3141595117
4096 03183098237 03183099173 3141592345 3141593269
8192 03183098705 03183098939 3141592576 3141592807
16384 (3183098822 03183098881 3141592634 3141592692
32768 03183098852 03183098866 3141592648 3141592663

We have achieved seven decimal places accuracy for the value
of m: 3.1415926. Here for puposes of comparison is the value of ©
correct to thirty-one decimal places:

n = 3.1415926535897932384626433832795...

12 This comes from similar triangles MXP and MQX, or by applying the familiar mean pro-
portional theorems.
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While the method of Archimedes relies on the trigonometric
functions sine and tangent, the method of Cusanus depends only
on elementary theorems like the Pythagorean theorem, simi-
larity, and the basic definition of the trigonometric functions.
Furthermore, the arithmetic and geometric means are used for
the iteration:

x+ r,+h
Aly) =2 =" Pon,

2
G(x’y) = \/x.y = Vrn.thx = r2n
Calculation of the Value of = by Counting Squares

It is always challenging to determine the actual value of n. There
isn’t any arithmetically comfortable method for calculating the
value of m. On the one hand, we only need an elementary knowl-
edge of mathematics for the following methods, but, on the other
hand, these approximations of the value of & are not as exact as the
calculations done by Archimedes or Cusanus. We offer here a few
relatively simple methods for calculating the value of &.

To determine the area of a circle, we can cover it with a lattice
of squares (each with a side of length 1), and we will count the
number of squares (a) in the interior of the circle. We then will
count the number of squares (b) that are intersected by the circle’s
circumference.

We will assume'? that one-half of the area of these intersected
squares lies in the interior of the circle, and the other half of the area
of these intersected squares lies outside the circle.

13. 1t is this assumption that will limit our accuracy of the approximation of m.
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So we have a + gas an approximate value for the area of the
circle. Let’s consider this with the following example.

Example 1:
Circle with the radius r = 8

a=14°6+12°4+10°2+6°2=164 b =60
Fig. 3-12

By the known method (using the formula for the area of a
circle) we get

Area =n.r’=3.14-82=200.96

circle

Now using the counting method, we get the following result,

which compares favorably with the traditional method above.

Approximate value: Area . =a+ §= 164 + 30 = 194,

which is close to the “actual” 201 found by the formula.

This approximation leads to « as follows: The approximate area
of the circle is 194. This should then be equal to 82 7= 647, so that
647 = 194. This gives a value for 7«::%‘i 303125,

The approximation of & becomes better when a larger number

of squares is used, say, when r = 10:
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Example 2:
Circle with the radius r = 10
TR -4
3 L
f A
\ /
1 iy
e SRERRE S ax
a=18°8+16°4+14°2+12°2+8+2=276 b=168
Fig. 3-13
Area, , =m-r*=3.14-10°=314
Approximate value: Area , . =a+ % =276 + 34 = 310,

which is now closer to the “actual” value, 314, as determined by the

=310 =102 = 1007. Thus, 7~32

formula above. Again, Area .(',8

circle

= 3.1, which compares favorably to the previous approximation.

Instead of the whole circle, it suffices to look at a quadrant,
count the respective squares, and then quadruple it.

Calculating the Value of = by Counting Lattice Points

The method used by the German mathematician Carl Friedrich
Gauss (1777-1855) is relatively simpler. Instead of counting the
number of squares, he determined the area of a circle by counting
the number of lattice points of the square lattice in the interior of
the circle. Lattice points are points with integer coordinates. We can
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locate all the lattice points of the circle with radius r with x? + y* <
r? (the Pythagorean theorem).

If f (r) represents the number of lattice points that lie in the cir-
cular area with the radius r, then we get (with the help of Gauss’s
idea) an approximation for m:

This should bring back thoughts (especially if you were to mul-
tiply both side of this “almost-equation” by r?) of the now-famous
formula for the area of a circle, Area = nr’. Here we have 7r? = f(r).

There is a formula for finding f{r), but this formula is compli-
cated. Instead, we will give some examples. Consider the fol-
lowing.

Example:




Calculating the Value of ©t 103

Instead of the whole circle, it suffices to look at a quadrant and
to count the respective lattice points again. (Be careful to count the
origin only once.)

Fig. 3-15
Further values:

r S 10 20 30 100 200 300 « 100,000

firy 81 317 1,257 2,821 31417 125,629 282,697 31.415,925,457
f) 324 317 31425 3134 31417 3140725 314107 3 1415925457

It appears that this sequence heads for the actual value of =,
3.1415926....

For r = 20, we already get the correct second place after the
decimal point. Strangely enough, for r = 30 the value of & gets less
accurate, but then eventually gets closer to the true value of .

Using Physical Properties to Calculate the Value of =

A physicist might determine the value of n by using what may be
considered a simpler method than was involved with the tedious
task of counting squares or lattice points.
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He would weigh (as exactly as possible) one circle with a radius
of 10 cm, which he would cut out of an evenly thick piece of card-
board. Then he would compare its weight (or its mass) with that of
a square (of 10 cm length side) cut out of the same material.

Fig. 3-16

We now compare the area of the circle, radius r, to the area of
the square, side 2r, by considering their weights.'4

Panke = 1) - 2 4 1.273239.'5 Therefore, 7 = 3.141594.

m r

square:

In the eighteenth century, the French agronomist Franzose
Olivier de Serres “proved,” by using a scale, that a circle weighs as
much as a square whose side has the length of that of an equilateral
triangle inscribed in the circle—this assumes that both figures are
cut out of the same material. When you follow the discussion
below, you will see that this implies that & = 3!

14. Technically speaking, we actually have a cylinder and a rectangular solid, if one were to
consider the width of the cardboard as the height of these objects.
15 Actually a constant value
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in AADM: m£DAM = 5 (60°) = 30°

SinZDAM = =3 ; therefore, x = ;

e
0

Area of the square = a* =(,\/3):= 32

Area of the circle = n r*

We can then conclude that & = 3.

Fig. 3-17
The Monte-Carlo Method to Determine the Value of n

The Monte-Carlo method'® is a procedure that makes use of prob-
ability, calculus, and statistics to form a summary to establish facts
with a large number of tests for a random experiment. The Buffon’s
needle problem (see chapter 1, pages 38-39) is considered one of
the Monte-Carlo methods.

Another such procedure can be simulated by means of rain-
drops that fall on a predefined square, or similarly by using a
number of random dart throws. This “dartboard algorithm,” which
can be used in a school setting, shall serve as an example here.

To do this, a chance rain is simulated and the hits counted
within and outside the inscribed circle (with radius of length 1) on
a square with side length 2. Using dart throws, instead of raindrops,
may be a better procedure. With the following considerations, one
then reaches a possibility to determine the value of &.

16 The name is taken from the gambling paradise
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The relationship between the hits in the circle and the complete
number of throws yields an approximation for n:

square
side: 2r=2
area: Agp = 2r?=4

circle
radius: r=1
area: AC=1t-r2=1t
Fig. 3-18

N D
el —==
so  4r 4

T _ 1 : : __ number of circle hits
%= probability (circle hits) = e ——

The method yields a good approximation for n only after a
very large number of throws. The randomizer (the dart thrower
or water dropper) must produce really coincidental numbers and
may not be subject to any regularities, that is, the person may not

influence where the darts or water droplets fall.
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Fig. 3-19

For the first quadrant we get, for example, in the case of ten
throws, that the first and the fourth throws don’t satisfy the condi-
tion x2 + y* < 1. Therefore, since two points are outside the target
region, only eight points are drawn:

Fig. 3-20
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For the calculation of the ratios of the areas, a Monte-Carlo
integration is now used. One may proceed as follows:

* With a random numbers generator, an x and a y value between
0 and 2r are “thrown.”

* The Pythagorean theorem is used to check if the thrown point
P(x, y) lies within or outside the circle.

¢ The hits in the circle are counted.

* The procedure is repeated—the more often repeated the more
accurate the expected value of ©t will be.

Calculating = from a Series of Numbers

Earlier we considered the following formula for m, which was
developed by the famous German mathematician Gottfried Wil-
helm Leibniz (1646—1716), who, together with Isaac Newton, is
credited with developing the modern calculus:

1 1 1 1 1

4 35 79 11

Leibniz, who is also considered one of the great philosophers of
the Western world, commented on the unusual connection between
the number n and the pattern of alternately adding and subtracting
odd unit fractions with the words “Numero deus impare gaudet”
(God is happy with the odd number).

We mentioned then that it approaches the value of m rather
slowly, since it will take one hundred thousand terms to get to a
five-place accuracy of &, and for six-place accuracy we will need to
carry this series out for one million terms.
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Let’s take a look at how this series “behaves.” We multiply
both sides by 4:

. :+I
1 1 1 1 1 1 1 17
T=de| ot — b ———t———=+ . |= 4.
35 7 9 11 13 15 n 21—1
n Partial Sum Exact Value Approximate Value
| 4«1 4 4
| 8
2 4-{1-;) : 2 666666666
3 4.(|-1+1] 32 3466666666
375 s
. 4.(._l+l_lJ 304 2895238095
3757 105
5 4-[1-1+1-l+l) 102 3339682539
3757779 315
6 4-(1-l+l-l+l_l) 10,312 2976046176
375777 3.465
7 4.[|—l+1-l+l-l+l] 147.916 3283738483
R MR TRET 45.045
3
8 4.[|_l+l_l+l_L+L_l] 135.904 3017071817
A ITRETINT 45.045
9 4-[1-1+1-1+l-i+l-l+l] 2:490.548 3252365934
P A TR T R T AT 765.765
10 4.(|_l+l_l+l_l FULIL L_L) 44.257.352 3041839618
P AR TR TR T AT AT 14.549.535
100 4-(|-1+1—11 -L] numerator and 3.131592903
3 5 7 199 denominator have 88 places
(see below)
R 1
1.000 4-[1-—+---: -—) - 3.131592902
37577 T19%
10,000 4.[|-1+1-1¢ —%) - 3.141492653
375777 T19.999
R |
100,000 4-(1——+—-—¢ - ) - 3.141582653
375777 T199.999

From the chart above, when n = 100 (exact value):

8252879759413978386664454687621174435983108111501291263199776 96145796 7786284578687066 7088
26351861627572364424958263830846984955655811155898488924128673587283987660899042189898375

17 This expression is merely a mathematical shorthand way of writing the series.
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The approximation value “jumps” back and forth around the
actual value of w, since the terms are adding or subtracting alter-
nately; it is, therefore, alternately bigger or smaller than =.

We compare the approximate value for n = 100,000 (the last entry
in the chart) with the correct value of & = 3.1415926535897932384...,
and we have indeed (only) four correct places. Then as we increase
the value of n, the approximation for & becomes increasingly more
accurate (i.e., closer to the true value of ).

n = 1,000,000: approximation value = 3.141591653
n = 10,000,000: approximation value = 3.141592553
n = 100,000,000: approximation value = 3.141592643

A Better Series Calculation for the Value of =

There are other series that converge'8 to the value of n faster than
the Leibniz series.

Earlier we mentioned the following formula for deriving the
value of , which was discovered by the famous Swiss mathemati-
cian Leonhard Euler:

1 1 1 1 <
= 6] l+=+—=+—+—+--|= [6) —
\/ ( 2?3 4§ ) \/ i

This formula is sensationally fast in comparison to that of
Leibniz. In the case of the Leibniz series, the computer needed

18 To “‘converge,” in this sense, means to approach a particular value as a limit
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more than two and a half hours for n = 108; the Euler series'®
delivers the accompanying approximation value for n = 10® in vir-
tually zero seconds of computer time!

The approximate values of m are about the same quality as
before. For n = 10® we get eight-place accuracy: n =~ 3.141592644.
Let’s take a look at some partial sums:

n Partial Sum Exact Value Approximate Value
1 6Il Je 2 449489742
2 6-[I+L‘) ¥ 2738612787
2’ 2
3 6 (.+L+LJ 76 2857738033
273 6
4 : ';230 2922612986
5 —I- L 5 V32.214 2963387701
23 5? 60
10 6-(I+L,+L,+ +-I—,+L‘) ¥39.049.870 3049361635
23 9" 10 2.520
100 6-[|+l,+l+ +-'—¢+;,] See Below* 3.132076531
2773 99" 100°
1 1 1
1.000 o 14—+ =+ b —— 3.140638056
73 999° " 1,000}
1 | ]
10,000 6o 14—+ —+ + _+ _ 3.141497163
7 3 9,999° " 10,000
1o 1 1
100,000 6o 14 =+t +——— b ——— 3.141583104
2773 99.999° * 100,000°
1o 1
1,000,000 6o 14 s+ s+ +— 3.141591698
23 (|o")
10.000.000 [ LA 3.141592558
2~ (1)
100,000,000 P L 3.141592644
2 (10%)
1.000.000,000 5 LI N 3.141592652
273 (]()")

* n = 100 (exact value):

J476852608239911361933689378555266157918715049563112957966829858441145439327110897830
6972083752297124771645338089353123083556800

19. Euler also found the sums of the reciprocals of the fourth and sixth powers (by the way, to
date no one has been able to do this for third powers').



112 4
For purposes of comparison, here is the value of m:

n = 3.1415926535897932384...

The Genius's Method for Finding the Value of =

The extraordinarily brilliant Indian mathematician Srinivasa
Ramanujan (1887-1920) made contributions to the generation of
the value of r but left little evidence on how he arrived at his
results. Born in 1887 in the small south Indian town of Erode,
Ramanujan spent his youth fascinated with mathematics to the
detriment of other subjects. As the fledgling Indian Mathematical
Society was being founded, it provided a forum for Ramanujan to
exhibit his mathematical prowess. For example, in 1911 he posed
problems based on his earlier work and found no solvers among the
readership. One such example was to evaluate

J1+2J1+3\/1+4m,

which appeared harmlessly simple, but yet found no successful
solvers. The trick was found in his notebook of theorems that he
established. Here, he simply applied the following theorem, which
said that if you could represent a number as (x + n +a), the above
expression could be represented as

x+n+a=\/ax+(n+a)2+x\/a(x+n)+(n+a)2+(x+n)\/7

Soif 3 =x + n +a, where, say, x=2,n =1, and a = 0, then the
value of this nest of radicals is simply equal to 3. This is nearly
impossible to do without knowledge of Ramanujan’s theorem.
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With this new exposure, he wrote to three of the top mathe-
maticians in England, E. W. Hobson, H. F. Baker, and G. H.
Hardy.?® Of these three Cambridge professors, only Godfrey
Harold Hardy (1877-1947) responded and ultimately invited
Ramanujan to England. Hardy thought that the statements con-
tained in the letter had to be correct. For, if they were wrong,
nobody would have had such a wild imagination to make them up.

Despite a clash of cultures, the two got along very well and
mutually assisted each other. This was the beginning of
Ramanujan’s popularity outside India. It should be remembered
that, even though wearing shoes and using eating utensils were
new to this Indian, he came from a long heritage of mathemat-
ical culture. The Indians were using our numeration system
(including the zero) for over a thousand years before it was
introduced in Europe with the publication of Fibonacci’s book,
Liber abaci, in 1202.

20. The letter to Hardy, dated “Madras, 16th January 1913 and which enticed Hardy to
respond, was the following

Dear Sir,

I beg to introduce myself to you as a clerk in the Accounts Department of the Port Trust Office
at Madras on a salary of only £ 20 per annum. I am now about 23 years of age. I have no University
education but I have undergone the ordinary school course. After leaving school I have been
employing the spare time at my disposal to work at mathematics. I have not trodden through the con-
ventional regular course which is followed in a University course, but I am striking out a new path
for myself. I have made a special investigation of divergent series in general and the results I get are
termed by the local mathematicians as “startling.”. . .

I would request you to go through the enclosed papers. Being poor, if you are convinced that
there is anything of value I would like to have my theorems published. I have not given the actual
investigations nor the expressions that I get but I have indicated the lines on which I proceed. Being
inexperienced I would very highly value any advice you give me. Requesting to be excused for the
trouble I give you.

I remain,

Dear Sir,

Yours truly,

S. Ramanujan.

(As reprinted in Robert Kanigel, The Man Who Knew Infinity: A Life of the Genius Ramanujan
[New York: Charles Scribner’s Sons, 1991], pp. 159-60.)
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In our context, Ramanujan came up with some amazing results
in the determination of the value of n. He empirically (his word)
obtained the approximate value of & with the following expression:

1 1 1
N ! !
g 4 197 =(81+ 361)4 =(2,143)4
22 22 22
1
=(97.409)4

= 3.141592652582646125206037179644022371557...

He further stated that the value he used for n for purposes of
calculation was

?%(l - _OQQ%) =3.1415926535897943...

3,533
which he went on to say “is greater than ©t by about 10-'>” and “is
obtained by simply taking the reciprocal of

1— (%):1 1,776,666.61854247437446528035543. .. '

The more ambitious reader can find the justification for this work
in appendix B.

Srinivasa Ramanujan gave us other uncanny approximations of
n. Even today we are mystified by how he arrived at the various
results. Although we are becoming more able to understand his der-
ivations, we still cannot fully appreciate the complexity of the way
his unique mind functioned. The following are some of his findings
on the value of m.

21 Srinivasa Ramanujan, “Modular Equations and Approximations to &t,” Quarterly Journal of
Mathematics 45 (1914): 350-72. Reprinted in S. Ramanujan: Collected Papers, ed. G. H. Hardy, P.
V Seshuaigar, and B. M. Wilson (New York: Chelsea, 1962), pp. 22-39.
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In chapter 2 we have already mentioned the following formula:

1B Z(4n) (1,103 + 26,390n)
T 98015 (n!)* 396*

Another formula is
i( ) 42n+5
~ 2[2n+4
The following are some approximations of r that are due to

Ramanujan:

—?%z 3.141592920 was originally discovered by Adriaen Métius
(1571-1635),2? and later Ramanujan gave a geometric construction

for this term.
9 9
2+ 2~ 3141640786
%z 3.141829681

Some series discovered by Ramanujan follow. However, the
important point is that evaluating such series to huge numbers of

digits requires developing specific algorithms.

1 242 & (4k)! (1,103+26,390k) .
; = 9,801 kz:,)(k')4 44k 99 [RamanU_lan]
(13,591,409 + 545,140,134k)
—= 122 ( ) 640320772 [Chudnovsky]
k=0 ’~
22. He and his father, Adriaen Anthoniszoon (c. 1600), took the approximation 3 1I06 <m< 3%

added the numerators ( 15 + 17 = 32) and the denominators (106 + 120 = 226), took the means (16 and

113), and gave T = 3 7 |‘4 == =3.1415929, a very close approximation. (D. E. Smith, History of Math-

ematics, vol. 2 [New York: Dover, 1958])
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Here are some more of the wondrous discoveries by the genius
Ramanujan that you may wish to ponder.

3 3 3
5(1] pol L3} [ L350,
2 24 24446

2 2 2 2
(l) +( ! )+( -3 ]+[ -3 ]+ [Forsyth]
2) "\ 2¢4) (2:4:6) (2+4:6-8
1) (4k)! (23+260k)

(k1)'a* 8%
L&, o (4K)! (1,123 +21,460k)
_3,528;::’,(_) (k1) 4% 882%

ey oy (6k)! (A+Bk)
"ZE,‘ ! (3k)1(k!)" €™

Il
+

-~
[

QA= A= 8= 3|+ 3|0
I
\1|_
[\S]
5l

[Borwein]
In the last formula
A = 1,657,145,277,365 + 212,175,710,912 /61
B = 107,578,229,802,750 = 13,773,980,892,672 /61
C = 5,280 (236,674 + 30,303) /61

and each additional term in the series adds about thirty-one digits.

We have seen numerous ways that the value of n was calcu-
lated. Some were primitive, while others were quite sophisticated.
Most remarkably are those that would have appeared to have
evolved from spectacular guesses. Today’s methods all involve the
computer, and how accurate the future calculations of the value of
n will be is going to be merely limited by man’s creativity and the
computer’s ability.



Chapter 4

n Enthusiasts

Popularity of

7 is so fascinating and one of the most popular numbers in mathe-
matics for a variety of reasons. First, just understanding what it is
(chapter 1) and what it represents and how it can be used has
intrigued mathematicians for ages. Its history (chapter 2) over the
past four thousand years, spanning the entire globe, has provided
amusement and discovery as well as an ongoing challenge.
Building upon the continuous attempts at getting ever-more-exact
values of © by seeing how many decimal places computers can gen-
erate, and how fast they can do it, has become the challenge today
for computers and computer scientists, rather than for mathemati-
cians, who still search for more elegant (and efficient) algorithms to
accomplish these tasks. Now that we are in the trillions of decimal
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places, who knows how far we are going to push a computer’s
capabilities? This seems to be the ultimate test for a computer.
There is a unique curiosity where the enthusiasm for m is
demonstrated for all to see. In 1937, in Hall 31 of the Palais de la
Decouverte, today a Paris science museum (on Franklin D. Roo-
sevelt Avenue), the value of n was produced with large wooden
numerals on the ceiling (a cupola) in the form of a spiral. This was
an inspired dedication to this famous number, but there was an
error: they used the approximation generated in 1874 by William
Shanks, which had an error in the 528th decimal place. This was
detected in 1946 and corrected on the museum’s ceiling in 1949.
There are many Web sites where © enthusiasts gather to share
their latest findings. In the United States, these nt lovers celebrate
March 14 as m-day, since as noted it is 3-14. And at 1:59, they
jubilate! (Remember 7 = 3.14159. . . .) What a coincidence that
Albert Einstein was born on March 14, 1879: we can see that this
number, 3.141879, is a good approximation of m. Other similar
coincidences are constantly found by these n enthusiasts. There are
ever more Web sites that help the n-day celebration. Here are just
two to begin with: http://www.exploratorium.edu/pi and
http://mathwithmrherte.com/pi_day.htm. Here also is the
Exploratorium’s (San Francisco) announcement of their n-day cel-
ebration—celebrating the most famous person born on that day!
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Exploratorium welcomes you to:

The 14th annual
Pi Day

CELEBRATION !

Ilustrations copyright © Exploratorium, http //www exploratonum edu Used with permission
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Apparently anything goes when it comes to celebrating n-day.
Pose the following question to a mathematician: “What are the
next numbers in the following sequence?”

3, 1,4, 1,5, ...

The answer may well be that you have 1s interspersed in the
sequence of natural numbers. So the next numbers would be

3,1,4,1,5,1,6,1,7,1,8,1,9, . ..

However, pose this question to a m enthusiast and the response
is surely to be

3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6, 2,6, . . .,

which, of course, is the value of nt (approximately!) This is indica-
tive of the mind-set of © enthusiasts.

The digits of the decimal value of n have been a topic of fasci-
nation for centuries. The quest goes on unabated to increase the
number of known decimal places of . Having generated this seem-
ingly endless list of digits comprising the decimal form of n, math-
ematicians and math enthusiasts have sought ways to find patterns
and other entertaining oddities with this number. As with any end-
less randomly generated list of numbers, you can make just about
anything happen within them that you may wish. Here we present
a small sample of some of these recreations and oddities.
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n Mnemonics

One of the simplest forms of entertainment with this decimal list of
digits is to show how many decimal places of the value of & you can
commit to memory. Some people like to show off by simply mem-
orizing the first ten, twenty, thirty, or more decimal places. Others
who may not have such sharp powers of memory try to create
mnemonic devices that will allow them to more easily memorize
this list of digits. For your entertainment, we will provide you with
a number of these mnemonic devices in a variety of languages, yet
from personal experience, a straight memorization of the digits
practically lasts forever. Memorize the first twenty-five digits
without any device and you will never forget them.

Most of the mnemonic devices for memorizing the decimal
value of n require finding somewhat meaningful sentences where
the number of letters per word determines the digit.

Although by now most of you have seen the value of © many
times, for convenience the first fifty-five decimal places are pro-
vided here: 3.14159 26535 89793 23846 26433 83279 50288
41971 69399 37510 58209. ..

One such sentence used by a number of mathematicians
(including Martin Gardner and Howard Eves) is “May I have a large
container of coffee?” giving the value 3.1415926, where the three let-
ters of “May” give the digit 3, the one letter “I”” gives the digit 1, the
four letters of the word “have” give us the digit 4, and so on. A
mnemonic that will give us the digits for the first nine decimal places
(3.14159265) of = is “But I must a while endeavour' to reckon right.”
We can get digits for the first fourteen decimal places
(3.14159265358979) from the sentence “How I want a drink, alco-
holic of course, after the heavy lectures involving quantum

1 British spelling.
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mechanics,” which is attributed to James Jeans, Martin Gardner,
Howard Eves, and others. A clever mathematician (S. Bottomley)
extended this sentence with the phrase “and if the lectures were boring
or tiring, then any odd thinking was on quartic equations again,”
giving us seventeen additional digits and thus the value of & to thirty-
one decimal places (3.1415926535897932384626433832795).

People in many countries (and, of course, in a variety of lan-
guages) have created poems, jokes, and even dramas where the
words used are based on the digits of n. For example, “See, I have
a rhyme assisting my feeble brain, its tasks sometime resisting.”

We offer here a small collection of such mnemonics, some of
which, with the exception of ChiShona and Sindebele, are from the
Internet Web site of Antreas P. Hatzipolakis.

Albanian: Kur e shoh e mesoj sigurisht.
[When I see it, I memorize it for sure.] (Robert Nesimi)

Bulgarian: Kak e leko i bqrzo iz(ch)islimo pi, kogato znae(sh)
kak.

[How easy and quickly was checked pi if you know how.]
(Note: ‘ch’ and ‘sh’ are single letters in Bulgarian.)

ChiShona (official language of Zimbabwe): Iye ‘P’ naye ‘I’
ndivo vadikanwi. ‘Pi” achava mwana.

[P and I are lovers. Pi shall be a brainy child.] (Martin Mugochi,
mathematics lecturer, University of Zimbabwe)

Dutch: Eva, o lief, o zoete hartedief uw blauwe oogen zyn
wreed bedrogen.

[Eve, oh love, oh sweet darling your blue eyes are cruelly
deceived.] (This song was being sung in the sixties, and its inventor
has slunk into obscurity.)
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English: How I wish I could enumerate pi easily, since all these
horrible mnemonics prevent recalling any of pi’s sequence more simply.

How I want a drink, alcoholic of course, after the heavy chapters
involving quantum mechanics. One is, yes, adequate even enough to
induce some fun and pleasure for an instant, miserably brief.

French:

Que j’aime a faire apprendre

Un nombre utile aux sages!

Glorieux Archimede, artiste ingénieux,

Toi, de qui Syracuse loue encore le mérite!

[I really like teaching

a number that is useful to wise men!

Glorious Archimedes, ingenious artist,

You, of whom Syracuse still honors the merit!]

Que j’aime a faire apprendre un nombre utile aux sages!

Immortel Archimede, artiste ingénieux

Qui de ton jugement peut priser la valeur?

Pour moi ton probleme eut de pareils avantages.

[I really like teaching a number that is useful to wise men!

Glorious Archimedes, ingenious artist,

Who can challenge your judgment?

For me, your problem had the same advantages.] (Published in
1879 in Nouvelle Correspondence Mathematique [Brussels] 5, no.
5, p- 449.)

German:
Wie o! dies &t
macht ernstlich so vielen viele Miih!



1t Enthusiasts 125

Lernt immerhin, Jiinglinge, leichte Verselein,

Wie so zum Beispiel dies diirfte zu merken sein!
[How oh this &

gives so many people so much trouble!

Learn after all, young fellows, easy little verses,

how such, for example, this ought to be memorized!]

Dir, o Held, o alter Philosoph, du Riesen-Genie!
Wie viele Tausende bewundern Geister,
Himmlisch wie du und gottlich!

Noch reiner in Aeonen

Wird das uns strahlen

Wie im lichten Morgenrot!

[You, oh hero, oh old philosopher, you great genius!
How many thousands admire spirits,

Heavenly as you and godly,

Still more pure in Aeonon

Will beem on us

As in a light dawn.]

Greek:

Agl 0 Oeog 0 Meyog yempetpel

To xuKAov UnKog va opion SLaUETPO

Iapnyayev apiBuov arepavrov

KQl OV PEV OVOETOTE OAOV

6vnrot Ba evpwot.

[The great God who always works with geometry,

in order to determine the ratio of the circumference of a circle
to its diameter,

created an infinite number,

that will never be determined in its entirety by mere mortals.]
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Italian:

Che n’ebbe d’utile Archimede da ustori vetri sua somma scoperta?

[What advantage did Archimedes’ discovery of the burning
mirror have?] (Isidoro Ferrante)

Polish:

Kto v mgle i slote

vagarovac ma ochote,

chyba ten ktory

ogniscie zakochany,

odziany vytwornie,

gna do nog bogdanki

pasc kornie.

[Who likes to skip school on a rainy and misty day, perhaps the
one who madly in love, smartly dressed, runs to fall humbly at the
feet of his loved one.]

Portuguese: Sou o medo e temor constante do menino vadio.
[I am the constant fear and terror of lazy boys.]

Romanian: Asa e bine a scrie renumitul si utilul numar.
[That’s the way to write the famous and useful number.]

Sindebele (official language of Zimbabwe): Nxa u fika e khaya
uzojabula na y’nkosi ujesu qobo.

[When you get to heaven, you will rejoice with the Lord Jesus].
(Note: again, the last digit represented here is due to rounding off—
it should be 3. Dr. Precious Sibanda, University of Zimbabwe,
mathematics lecturer)
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Spanish: Sol y Luna y Cielo proclaman al Divino Autor del
Cosmo.

[Sun and Moon and Skies proclaim the divine author of the
Universe.]

Soy m lema y razén ingeniosa

De hombre sabio que serie preciosa

Valorando enuncié magistral

Con mi ley singular bien medido

El grande orbe por fin reducido

Fue al sistema ordinario cabal.

[I am pi motto and ingenious reason

of wise man that beautiful series

valuing I enunciate magisterial

with my singular law measured well

the big world finally limited

it went to the ordinary complete system.]

(Columbian poet R. Nieto Paris, according to V. E. Caro, Los
Numeros [Bogota: Editorial Minerva, 1937], p. 159.)

Swedish:

Ack, o fasa, m numer feerringas

ty skolan later var adept itvingas

rakneldra medelst rdknedosa

och sa ges tilltron till tabell en dyster kosa.
Nej, 14t istdllet dem nu tokpoem bibringas!
[Oh no, Pi is nowadays belittled

for the school makes each student learn
arithmetic with the help of calculators

and thus the tables have a sad future.

No, let us instead read silly poems!] (Frank Wikstrom)
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For those of you who wish to create a 1 mnemonic, we offer
(for convenience) the value of & to enough places to satisfy most.
Remember, there is a limit to how many words one can memorize,
even if they produce interesting content. You might be interested to
know that the world record holder for the greatest number of digits
of © memorized is Hiroyuki Goto, who took over nine hours to
recite more than forty-two thousand digits of m.2

7 =3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209
74944 59230 78164 06286 20899 86280 34825 34211 70679 82148 08651
32823 06647 09384 46095 50582 23172 53594 08128 48111 74502 84102
70193 85211 05559 64462 29489 54930 38196 44288 10975 66593 34461
28475 64823 37867 83165 27120 19091 45648 56692 34603 48610 45432
66482 13393 60726 02491 41273 72458 70066 06315 58817 48815 20920
96282 92540 91715 36436 78925 90360 01133 05305 48820 46652 13841
46951 94151 16094 33057 27036 57595 91953 09218 61173 81932 61179
31051 18548 07446 23799 62749 56735 18857 52724 89122 79381 83011
94912 98336 73362 44065 66430 86021 39494 63952 24737 19070 21798
60943 70277 05392 17176 29317 67523 84674 81846 76694 05132 00056
81271 45263 56082 77857 71342 75778 96091 73637 17872 14684 40901
22495 34301 46549 58537 10507 92279 68925 89235 42019 95611 21290
21960 86403 44181 59813 62977 47713 09960 51870 72113 49999 99837
29780 49951 05973 17328 16096 31859 50244 59455 34690 83026 42522
30825 33446 85035 26193 11881 71010 00313 78387 52886 58753 32083
81420 61717 76691 47303 59825 34904 28755 46873 11595 62863 88235
37875 93751 95778 18577 80532 17122 68066 13001 92787 66111 95909
21642 01989

2 “Japanese Student Recites Pi to 42,194 Decimal Places,” Seattle Times, February 26, 1995
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More Fascination with the Digits of &

Then there are those who are fixated on the frequency of the digits of
the decimal expansion of n. That is, do the digits come up with equal
frequency throughout the many decimal places of n? To determine this,
we need to look at a frequency distribution—a table that summarizes
the frequency that each of the digits appears within certain intervals.
For the first one hundred decimal places of n, do the digits appear with
equal frequency? If not, then almost equal frequency? To expect equal
frequency within the first one hundred digits would be a bit unreason-
able. When we inspect these digits, we discover how far off the distri-
bution is from this exactly equal frequency. There are statistical tests to
determine if the slight bit that they may be off for equality is due to
chance. If the disparity is due to chance, then we say that the distribu-
tion is statistically significantly the same as an equal distribution. This,
you will find, is the case in the distribution of the digits yielding the
decimal places for the value of n. The following distribution of decimal
digits d is found for the first 10" digits of & — 3, that is, we are concerned
with only the decimal part of 7.3 It shows no statistically significant
departure from a uniform distribution. Dr. Yasumasa Kanada provides
the distribution of the first 1.24 trillion places, the world record for the
value of n found at the end of 2002.

The number of times the digits appear within the first 10” places of

Digits 11010 1t010" 1w 10* 1t010* 1o l10* 110" 1wl0* 1w 10° Lo 10" Lo 10" 110107

[ 8 9 968 9999 99959 999440 9999922 99993942 999967995 10000104750 99999485134

1 8 1eé 1026 10137 99758 999333 10002,475 99997334 1000037790 9999937631 99999945664
2 12 103 1021 9908 100026 1000306 10001092 100002410 1000017271 10000026432 100000480057
3 1 102 974 10025 100229 999964 9998442 99986911 999976483 9999912396 99999787805
4 10 93 1012 9971 100230 1001093 10003863 100011958 999937688 10000032702 100000357857
5 8 97 1046 10026 100359 1000466 9993478 99998885 1000007928 9999963661 99999671008
6 9 94 1021 10029 99548 999337 9999417 100010387 999985731 9999824088 99999807503
7 8 95 970 10025 99800 1000207 9999610 99996061 1000041330 10000084530 99999818723
8 12 101 948 9978 99985 999814 10002180 100001839 999991772 10000157175 100000791469
9 14 106 1014 9902 100106 1000040 9999521 100000273 1000036012 9999956635 99999854780

3. Y. Kanada, “Sample Digits for Decimal Digits of Pi,” January 18, 2003, http://www.super-
computing org/pi-decimal_current.html
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Another, and more detailed, distribution is provide by Dr.
Kanada. Here you can see that as the number of digits considered
increases, the digits come closer to an equal frequency for all digits.
In the first one hundred places, there are many more 9s (fourteen)
than there are Os, 1s, 5s, or 7s. Among the first two hundred places,
there is less than half the number of 7s as 8s. And so it goes until
we get to a larger number of decimal places.
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Dr. Kanada also provides us with some entertainment within his
record-breaking value of n. For example, he spotted the repetition of
digits—twelve to be exact—at certain positions of the 1.24 trillion
places. Here is a list of these repetitions and the decimal places at
which they begin:

777777777777: from 368,299,898,266th decimal place of
999999999999: from 897,831,316,556th decimal place of ©
111111111111: from 1,041,032,609,981th decimal place of ©
888888888888: from 1,141,385,905,180th decimal place of ©
666666666666: from 1,221,587,715,177th decimal place of ©

We also find the sequence of the natural numbers (with zeros at
both ends of the sequence) at various places among the first 1.24 tril-
lion places. Here they are along with the place at which they begin:

01234567890 : from 53,217,681,704th decimal place of &t
01234567890 : from 148,425,641,592th decimal place of
01234567890 : from 461,766,198,041th decimal place of
01234567890 : from 542,229,022,495th decimal place of ©
01234567890 : from 674,836,914,243th decimal place of &t
01234567890 : from 731,903,047,549th decimal place of
01234567890 : from 751,931,754,993th decimal place of
01234567890 : from 884,326,441,338th decimal place of &t
01234567890 : from 1,073,216,766,668th decimal place of &

They can also be found in reverse order:

09876543210 : from 42,321,758,803th decimal place of &
09876543210 : from 57,402,068,394th decimal place of &
09876543210 : from 83,358,197,954th decimal place of n
09876543210 : from 264,556,921,332th decimal place of ©
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09876543210 : from 437,898,859,384th decimal place of &
09876543210 : from 454,479,252,941th decimal place of n
09876543210 : from 614,717,584,937th decimal place of n
09876543210 : from 704,023,668,380th decimal place of n
09876543210 : from 718,507,192,392th decimal place of
09876543210 : from 790,092,685,538th decimal place of &t
09876543210 : from 818,935,607,491th decimal place of n
09876543210 : from 907,466,125,920th decimal place of n
09876543210 : from 963,868,617,364th decimal place of &t
09876543210 : from 965,172,356,422th decimal place of &t
09876543210 : from 1,097,578,063,492th decimal place of n

These are just a few of the “entertaining” aspects of the decimal
value of n. Actually, since the decimal extension will go on indefi-
nitely (even though we now have it only to 1.24 trillion places), one
should be able to find any combination of numbers among this
sequence of digits. For example, the birthday of the United States
(7-4-1776), that is, 741776, appears beginning with the 21,134th
decimal place of m. The authors’ respective birthdays were found
among the first 100 million decimal places of & as follows:

October 18, 1942, written as 10181942, was found beginning at
the 1,223rd place of n, and

December 4, 1946, written as 12041946, was found beginning
at the 21,853,937th place of =.

You can have fun trying to locate other strings of numbers. The
easiest way to do this is to search the Internet for a Web site that
does this for you. There are many such available. All you need to
do is type the string of numerals you seek to find, and the search
engine will find the location of these within a few seconds.
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If you take the first string of numerals—314159—to see when
it next appears, the search engines will likely tell you that it reap-
pears at the 176,45 Ist place and then reappears another seven times
in the first 10 million places of m. So now the rest is for your recre-
ation. Search for your personal string of numbers on any of these
search engines. You might begin with your birth date. Remember,
if you minimize the number of digits in your birth date, you will
have a greater chance of finding it among the known digits of n. So
you are better off when searching for April 18, 1944, by searching
for 41844, than if you search for 04181944. Some of you might
have luck with the longer version as well.

An Optical Illusion
n enthusiasts also focus on the purely geometric stage. Without &t

they wouldn’t be able to discern the following optical illusion,
namely, that both inner circles are the same size.

)
OOF::
QQ

Fig. 4-1



7t Enthusiasts 135

A 7 Song

As a parting note on the n enthusiasts, we offer the following: a
song! This song, adapted from Don McLean’s “American Pie” by
Lawrence (Larry) M. Lesser from Armstrong Atlantic State Univer-
sity, gives historical highlights of the number n.

Visit  http://www.real.armstrong.edu/video/excerptl.html to
download a video of Larry performing this and some other math
songs. We also recommend Larry’s “math and music” page at http://
www.math.armstrong.edu/faculty/lesser/Mathemusician.html

“AMERICAN n”’ by Lawrence Lesser (reprinted with permission)

CHORUS: Find, find the value of pi, starts 3 point 14159.
Good ol’ boys gave it a try, but the decimal never dies,
The decimal never dies . . .

In the Hebrew Bible we do see

the circle ratio appears as three.

And the Rhind Papyrus does report four-thirds to the fourth,
& 22 sevenths Archimedes found

with polygons was a good upper bound.
The Chinese got it really keen:
three-five-five over one thirteen!

More joined the action

with arctan series and continued fractions.
In the seventeen-hundreds, my oh my,

the English coined the symbol n.

Then Lambert showed it was a lie

to look for rational .

He started singing . . . (Repeat Chorus)
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Late eighteen-hundreds, Lindemann shared
why a circle can’t be squared.

But there’s no tellin’ some people—

can’t pop their bubble with Buffon’s needle,
Like the country doctor who sought renown
from a new “truth” he thought he found.
The Indiana Senate floor

read his bill that made = four.

That bill got through the House

with a vote unanimous!

But in the end the statesmen sighed,

“It’s not for us to decide.”

So the bill was left to die

like the quest for rational &.

They started singing . . . (Repeat Chorus)

That doctor’s =t in the sky dreams

may not look so extreme

If you take a look back: math’maticians long thought that
Deductive systems could be complete
and there was one true geometry.

Now in these computer times,

we test the best machines to find

T to a trillion places

that so far lack pattern’s traces.

It’s great when we can truly see

math as human history—

That adds curiosity . . . easy as !

Let’s all try singing . . . (Repeat Chorus)
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nt Cunosities

The number n has a tendency to pop up when you might least
expect it, as was the case with Buffon’s needle, where the proba-
bility of a tossed needle landing on the lines of a ruled piece of
paper led us to a very close approximation of the value of .

n Digit Curiosities

There are some rather surprising curiosities surrounding the value
of m. You might find them coincidental or mysterious. We will let
you judge. For example, the circle has 360 degrees, and that fact is
connected with & in a peculiar way. Look at the 360th decimal posi-
tion of ©t (the 3 before the decimal point is counted):

137
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3.1415926535897932384626433832795028841971693993
75105820974944592307816406286208998628034825342
11706798214808651328230664709384460955058223172
53594081284811174502841027019385211055596446229
48954930381964428810975665933446128475648233786
78316527120190914564856692346034861045432664821
33936072602491412737245870066063155881748815209
20962829254091715364367892590 360

The number 3 is at the 359th place, the number 6 at the 360th place,
and the number 0 at the 361st place. This places 360 centered at the
360th digit.

Again, considering the value of nt (below) we recall that two of
the more accurate fractional approximations of © are

2—72 = 3.142857142857142857 and

%f—‘;- = 3.141592920353982300884955722124

We can see that when we locate the 7th, 22nd, 113th, and 355th
positions in the decimal value of &, they all have a “2” in that posi-
tion. Is this coincidental, or does it have some mysterious meaning?

3.1415926535897932384626433832795028841971693993
75105820974944592307816406286208998628034825342
11706798214808651328230664709384460955058223172
53594081284811174502841027019385211055596446229
48954930381964428810975665933446128475648233786
78316527120190914564856692346034861045432664821
33936072602491412737245870066063155881748815209
20962829254091715364367892590 360
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This scheme falls apart with the next approximation of m, namely,
oot = 3.1415923873765357745121657431944, since, although the
52,163rd place is a “2,” the 16,604th place is a ““1,” although it is pre-
ceded and succeeded by a “2.” If anything, this prevents us from

making a rule about the digits of «t, which would not have been true.

Probability’s Use of =

It is quite curious that &t is related to probability. For example, the
probability that a number chosen at random from the set of natural
numbers' has no repeated prime divisors? is ”i . This value also rep-
resents the probability that two natural numbers selected at random
will be relatively prime.? This is quite astonishing since = is derived
from a geometric setting.

Using = to Measure the Lengths of Rivers

Another such curious appearance of & arises when we inspect the
path of a river. Hans-Henrik Stglum, a geologist at Cambridge Uni-
versity, calculated the ratio between twice the total length of a river
and the direct distance between the source and the end of a river.*
Recognizing that the ratio may vary from river to river, he found
the average ratio to be a bit greater than 3. It may be about 3.14,
which we recognize as an approximation for x.

Rivers have a tendency to wind back and forth. This so-called
meandering of a river is particularly interesting. The term “mean-
dering” came from the river Maeander, which is today called Biiyiik

1 The natural numbers are simply our counting numbers: 1,2, 3,4,5,6,7,8,9. 10, 11, 12, . .
2. That means in the set of prime divisors, no prime number will appear more than once

3 Two numbers are relatively prime when they do not have a common divisor, other than |

4 H-H Stglum, “River Meandering as a Self-Organizing Process,” Science 271 (1996) 1710-13
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Menderes (in western Turkey), and it flows in the Aegean Sea at the
ancient Milet. This river shows particularly strong meanders.

Albert Einstein was the first to point out that rivers have a ten-
dency toward a loopy path, that is, a slight bend will lead to faster
currents on the outside shores, and the river will begin to erode and
create a curved path. The sharper the bend, the more strongly the
water flows to the outside, and in the consequence the erosion is in
turn the faster.

The meanders get increasingly more circular, and the river turns
round and returns. It then runs straight ahead again, and the
meander becomes a bleak branch. Between the two reverse
processes a balance adapts.

Fig. 5-1

Fig. 5-2
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Fig. 5-3

Let us take a look at a fictitious river and superimpose semicir-
cles over the curves. We then have a sum of semicircular arcs that
will be compared to a single semicircular arc with a diameter equal
to the full distance the river will have traveled (as the crow flies).

I = length of the river from the source A to the mouth B
AB = (straight) distance between the source A and the mouth B
M, = midpoint of the diameter of the semicircle® with radius

a = approximation of the river’s length (sum of the
semicircles’ arcs):

a=mr +nr,+ W+, + g+ g =n(r, +r,drytr,Hrg+r)

2a =2n(r, + ry+ ry+r,+rg+r)=n +AB, which means

e L _2a 2

VA a

2 AB AB or "=AB 4B

Rivers that run with a gradual drop in elevation, as can be found in
Brazil or in the Siberian tundra, deliver the best approximation for
n. From a peculiar application of ©t, we will now focus our attention
on the unusual ways we can express approximations of .

5. This means that the semicircle with diameter midpoint M, has a radius length r.
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Unexpected = Coincidences

The value of n comes up in the oddest places. In some cases it
“almost appears.” Mathematicians for centuries in their quest for
establishing the value for n have “collected” these close approxi-
mations for . We offer a small list of some of these very close
approximations to m, for example, J10 =3.162278 is surprisingly
close to m. We can continue to list more of these curiously close
approximations to m. In some cases, such as with Bl =
3.141380652391, they probably came up by chance and were
immediately recognized by the mathematics community (and then,
of course, treasured). In other cases, the finding can be considered
to border on ingenious—or just lucky? You decide.

Here are a few other “estimates” of m. After inspecting the fol-
lowing list, perhaps you can devise another such approximation of .

J2 +3 = 3.14626436994

6
333 _ 3 147509433962264
106

(I.H)x (1.2) x (1.4) x (1.7) = 3.1416

1.09999901 x 1.19999911 x 1.39999931 x 1.69999961
= 3.141592573

(355)(1_0'0003] ~ 3.1415926535897943

3\ 3,533
3 3
513_:’)32_0 ~ 1= 3.141592503

6 The bar above the digits indicates that those digits repeat in this order indefinitely.
*“The four equations marked with an asertisk are from Dario Castellanos, “The Ubiquitous mt,”
Mathematics Magazine 61, no 2 (April 1988)
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(97 + %)4 =~ 3.141592652582646125206037179644

1
( 77,729 )5 ~ 3.1415926541
254

1
2 3
(31 + 622+ 14) ~ 3.14159265363*

84

1,700° +82° -10° - 9° - 6* - 3°
69’

= 3.1415926535881*

3 3 3 2
(100_2,125 +214" +30" +37

4
E ) = 3.141592653589780*

%+ \/g = 3.1416407864998738

1947

6 =~ 3.1418296818892

296\’
(i) ~ 3.14159704543
167
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2
2+,/1+ (ﬁ“—?’) = 3.141592920
750

(93_)[17“5\/5

LT OND | < 3.14159265380
25 )\ 7+155

v9.87 =3.141655614...

V9.8696 = 3.141591...

v9.869604401 = 3.14159265357...

V/9.869604401089358618834491 =

3.14159265358979323846264338329...

, 19°
4197 + — = 3.141592652...
22

2+4/41 =3.141586440...

[R. Mohwald]

[Ramanujan]
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o218 _ 3 141592650...
2

331+ = 3.1415926534...

3,983

331 =3.1413 80 6...

J V7 = 3.141603591 ...

9 JVar

\/\} \/ﬁ = 3.141592624...

By the way, just for fun, look at this: Jr =1.772453851... and

33 = 1.772435897, which implies that another good approxima-

IV

553

tion would be (2] = 3.14152901....
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In mathematics we are always looking for connections between
concepts that on the surface have nothing to do with each other. For
example, a connection between T and the golden ratio,’ ¢, is not easy
to find. Yet, Clifford A. Pickover in his book The Loom of God:
Mathematical Tapestries at the Edge of Time has almost made the
connection. He makes the “almost connection” with the following: g
¢ = m. But this is, again, only an approximation of &, since §¢ =
3.1416407864998738178..., while n = 3.1415926535897932384....
So you make the comparison. Satisfied with the connection?

Although not a connection (in the truest sense of the word),
another famous mathematical value is the base, e, of the natural
logarithm, which equals approximately 2.718281828. The value of
e™ is very close in value to n¢. Using a calculator, we can easily cal-
culate each value just to see how close in value these actually are.
e™ = 23.1407 . . . and n® = 22.4592. . . . Quite astonishing!®

Continued Fractions and =

The value of & can also be expressed as a continued fraction. Before
we show this, we will briefly review what a continued fraction is. A
continued fraction is a fraction in which the denominator has a mixed
number (a whole number and a proper fraction) in it. We can take an
improper fraction such as g and express it as a mixed number:

7 The Golden Ratio is the ratio of two line segments, a and b (where a < b), such that
4. The ratio o=—’-£—-' =~ .6180339887498948482045868343656, while the reciprocal ”- ﬁ*‘
= I 6180339887498948482045868343656 Notice the relationship between the decimals lt sug
gests that o«|=; .

8. For the mathematic enthusiast, we provide several proofs of this fact in appendix C. Namely,
that e > &t°



1t Curiosities 147

Without changing the value, we could then write this as

1
6
1+7=1+T

6

which in turn could be written as (again, without any value change)

1
1+ 71

1+—

6
This is a continued fraction. We would have continued this process,
but when we reach a unit fraction, we are essentially finished. Just so
that you can get a better grasp of this, we will create another continued
fraction. We will convert '—73 to a continued fraction form:

[a—
[\
—
[
[
[

If we break up a continued fraction into its component parts
(called convergents),” we get closer and closer to the actual value
of the original fraction.

First convergent of % =1

Second convergent of % =1+ } =2

I
[a—
+
[RR N S)
1l
[a—
W
Il
w| W

Third convergent of % =1+

1+

N | —

9. This is done by considering the value of each portion of the continued fraction up to each
plus sign, successively.
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1
Fourth convergent of '—73 =1+ -t =

24—
2

12
7

The above examples are all finite continued fractions. They
result in rational numbers (those that can be expressed as simple
fractions—albeit improper fractions). It would then follow that an
irrational number would result in an infinite continued fraction.
That is exactly the case. A simple example of an infinite continued
fraction is that of /2.

V2=1+ !

2+ L

1
1
1
1
1

+ —
2+

2+

2+
2+
2+
2

We have a short way to write a long (in this case infinitely long)
continued fraction: [1, 2, 2, 2, 2, 2, 2, 2,...], or when there are these
endless repetitions, we can even write it in shorter form as [1, E],
where the bar over the 2 indicates that the 2 repeats endlessly.

The German mathematician Johann Heinrich Lambert
(1728-1777) was the first to rigorously prove that © was irrational.
His method of proof was to show that if z is rational (and not zero),
then the tangent of n cannot be rational. He said that since tan % =
1 (a rational number), then 2 or & cannot be rational.!” In 1770

4
Lambert produced a continued fraction for x.

10. Lambert’s proof was strengthened by Adrien-Marie Legendre (1752-1833) in his 1794
book, Eléments de géometrie
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This written in short form is [3, 7, 15, 1,292, 1,1,1,2, 1,3, 1,
14,2,1,1,2,2,2,2,1,84,2,...]
3 22 333 355

The convergents of this continued fraction are 1T T 113
103,993 104,348

33,102 ° 33,215 °°°°
You may remember seeing the first convergents before. They
were historical approximations:
3 was the approximation mentioned in the Bible (I Kings 7:23
and 2 Chronicles 4:2).
% was the upper bound given by Archimedes in the third cen-
tury BCE.

was the lower bound for n found by Adriaen Anthoniszoon.

33
106

355
113

was found about 480 by Tsu Ch’ung Chi and others.

The first four may appear familiar to you since we encountered
these approximations earlier. With each successive convergent, we
get closer to the value of n. Here are the decimal values of these
convergents. Notice how they approach n gradually, each succes-
sive one gets ever closer to m.
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Convergents of n Decimal equivalents

3

1 3.0

= 3.142857142857

= 3.141509433962264

= ~ 3.1415929203539823008849557522124
e ~ 3.1415926530119026040722614947737
104,348

VE 3.14159265392142104470871594

For the motivated reader, we provide two nonsimple continued
fractions (with numerators other than 1) whose successive conver-
gents will also approach the value of m:!!

4 12
—=1+ 5
T 3
2+ 5
5
2+ 5
7
2+ 5
9
24—
11
2+
24...
T 1
-é-—l+l+ )
423
1+ 3-4
445
1+
1.|....

11. In 1869, James Joseph Sylvester (1814-1897) discovered the second continued fraction,
shown here. He is also known for his role in founding the American Journal of Mathematics.
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In peculiar ways we can make 7 relate to other aspects of math-
ematics. For example, the harmonic series

1 1

1 1
1+ -+ -+ + -+ =+ —+..
8 9 10

+

N | —
|-

1 1 1

-+ — 4+ -+

3 4 5

in which the addends merely are a sequence formed by taking the

reciprocals of the natural numbers: 1, 2, 3,4, 5,6, 7, 8,9, 10, ...
Can this also relate to n? This time, however, we must make a

slight modification. We will take the squares of the terms of the har-

2
monic series to get . That is, % = l+5'2— +3—'3 +Z|2‘ +5i2 +6l_1 +....

Some other series'? that relate to &t are provided below:

~# 1 1 1 1 1

— el ————  —_———
12 22 32 4 32 6
4 4 4 4 4 4 4 4

7[ _—— — —_—— — —_—— — — e ——

13579111315

The above expression of © was developed by Leonhard Euler, who
also came up with another interesting expression for obtaining the
value of m:

N G S Sk

which, by using some elementary algebra,'3 can be written in a sim-
pler form as'4

- (1222 2 ) e

12. A series is the sum of the terms of a sequence
13. The general term can be written as | — —, which then equals ——
Il

n l _(n- I)(n+|)

14. This was first developed independently by John Wallis.
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While discussing expressions that can represent T, we should
note the formula that Leonhard Euler developed:'”

7 =lim l+L+4n( l + 1 44 1 )
el p o 6n° n’+1> n?+2? n’+n’

It is interesting to see this formula applied to successive values
of n. You will notice that after n = 10, the approach to © gets
markedly slower.

Values of n Values of n as determined by Euler’s formula
1 3.16666666666666

2 3.14166666666666

3 3.14159544 159544

4 3.141593137254902
5 3.141592780477657
10 3.141592655573826
20 3.141592653620795
30 3.141592653592515
50 3.141592653589920
100 3.141592653589795
112 3.141592653589793

We shall end this chapter with some purely recreational illustra-
tions. Dario Castellanos, in his comprehensive article “The Ubiqui-
tous w,”'¢ shows how (somewhat circuitously) the number 666 is

15. Discovered in a correspondence to Christian Goldbach, Castellanos, “The Ubiquitous m,” p. 73.
16. 1bid.
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related to w. Be patient as you follow along. First, a word about the
number 666. It is the number of the beast in the book of Revelations
in the Bible: “Here is wisdom. Let him that hath understanding
count the number of the beast; for it is the number of a man, and his
number is six hundred, three score and six.” It is also the thirty-
sixth triangular number (666:%-36-37]. It is also curious that 666 rep-
resented in Roman numerals is DCLXVI, which uses all the sym-
bols less than M exactly once.

The number 666 is equal to the sum of the squares of the first
seven prime numbers:

666=22+324+524+ 724112+ 132 + 172

Some other peculiarities of 666 follow.
The exponents reflect the number 666 and the bases are the first
three natural numbers.

666 = 16— 26 + 36

Now look at how the 666 manifests itself:

666=6+6+6+6°+6+6

or 666 = (6+ 6+ 6)> + (6+ 6+ 6>+ 6+ 6+ 6

Notice the pattern here:

666=13+23+33+43+53+63+53+43+33+23+ 13

Having now established the unusualness of the number 666, we
will come back to it shortly. Consider the first nine digits of the
value of m in groups of three: 314 159 265. The second two groups

of three, together with 212, form a Pythagorean triple (159, 212,
265), which means that 159? + 2122 = 2652.
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Now here is the “stretch.” This newly introduced number, 212,
together with 666, forms a quotient that gives a nice approximation
of m. That is, 5>= 3.14150943396226.

A further connection with the relationship of 666 and n: the sum
of the first 144 (= [6 + 6] [6 + 6]) digits of & is 666.

Another recreational application of n Castellanos shows involves a

magic square.!” Consider the conventional 5 X 5 magic square:

1712411 |8 |15

2315 |7 |14]1

4 16 |[13[20]22

10112119]21]3

1118125712 19

We now replace each number with that number digit of the &t
decimal value. That is, we replace 17 with 2, since 2 is the seven-
teenth digit in the value of &, and so on.

Sum of the rows

2 4 3 6 9 24

6 5 2 7 3 23

1 9 9 4 2 25

3 8 8 6 4 29

5 3 3 1 5 17
Sums of the columns 17 29 25 24 23

Notice how the sums of the columns are the same as the sums of
the rows!

You can call the following coincidence or consider it a strange
mystery, but look at this next relationship.

17. A magic square is a square arrangement of numbers where the sum of each row, column,
and diagonal is the same.
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Let’s look at the first three decimal places of n: 141. The
sum of these digits is 6, the first perfect number,'® and the third
triangular number.'®

Now look at the first seven decimal places of n: 1415926. Their
sum is 28, which is the second perfect number and the seventh tri-
angular number. Astonishing symmetry!

Mike Keith’s World of Words & Numbers (http://users.aol.com/
s6sj7gt/mikehome.htm#toc) provides some unusual numerical recre-
ations. One is an unusual pattern of the digits of n. First, arranging
the digits of the decimal value of m as hexagonal numbers,?® we get
the last number (the first hexagonal number) as six nines.

Notice how the last row of digits, representing the first polyg-
onal number, 1, consists of all nines. That is, we ended up at these
six nines after the 768th digit.

3141 59326 5358 92793 3384 62
33032 795032 DCKERS 71693 99375 105 83
097454 459230 781640 620820 899863 803 482
5342117 0679631 680865 1 323832306 6470938 4460 955
088233 173535 940613 848111 745028 410370
193858 31105 $s5964 46329 48984 930 38
1964 TR 1097 s6as 2334 4613

0475 €en2 3378 €783 16353 71 30

19091 4564 56692 346013 48610 45432
664821 339360 73602 4 914137 372458 700 660
63156688 1746615 3092309 6 28029354 0917153 6436 789
259036 001133 053054 882046 652138 414 695

19418 11608 43305 737013 €5789 591 958
3093 18061 1738 1932 €111 93 10
$11 054 007 “a6 337 996
2749 5673  s1es $753 7348 9122
79381 83011 9491 2 98336 73363 44068
€643 0860 2119 4946 3953 2473
719 070 317 s06 094 310
379 053 931 711 €39 317
€733 3846 1481 8467 66954 0513
20005 68127 1452 6 35608 27785 77134
3157 1886 0911 3637 1787 2146
e 0s0 132 s 343 14

18. A perfect number is one where the sum of its proper factors is equal to the number itself.
For example, 6 is a perfect number because the sum of its proper factors, 1 + 2 + 3, equals 6.
19. Triangular numbers are those that represent an equilateral array of points:

20. Hexagonal numbers are those that represent a hexagonal array of points:

Hence, 1, 7, 19, etc. are hexagonal numbers.
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Realizing that the six nines will appear after the 768th digit, let
us now repeat this for 12 X 8 rectangles:

314159265358 979323846264 338327950288 419716939937 510582097494 459230781640
628620899862 803482534211 706798214808 651328230664 709384460955 058223172535
940812848111 745028410270 193852110555 964462294895 493038196442 881097566593
344612847564 823378678316 527120190914 564856692346 034861045432 664821339360
726024914127 372458700660 631558817488 152092096282 925409171536 436789259036
001133053054 882046652138 414695194151 160943305727 036575959195 309218611738
193261179310 511854807446 237996274956 735188575272 489122793818 301194912983
367336244065 664308602139 494639522473 719070217986 094370277053 921717629317

675238 467481 846766 940513 200056 812714
526356 082778 577134 275778 960917 363717
872146 844090 122495 343014 654958 537105
079227 968925 892354 201995 611212 902196

086 403 441 815 981 362
977 477 130 996 051 870

9 9 9 9 9 9

There are lots of properties that can be established for the
number 768. For example, 768 = 3 x 256 =3 x 4* = 12 x 43 =
O6)(1+1+2+4+8+16+ 32+ 64), as well as others that you can
find. These properties allow us to neatly end up with the row of
nines in the above geometric arrangements.

Searching the Internet or reading books on number theory and
recreational mathematics will provide you with a boundless supply
of n peculiarities to savor.



Chapter 6

Applications of &

We will now explore the various applications of & in a variety of
ways. This will involve some unusual properties of the circle,
which determines m. We will explore the areas of some rather
strange-looking regions that are based on the circle and find the
lengths of circular arcs that are a bit “off the beaten path.” Yet we
will begin with the introduction to a geometric shape that shares
many properties with the circle but isn’t one.

n When You Least Expect It

It is well known that & is related to the circle—as its ratio of cir-
cumference to diameter. We begin by inspecting another geometric
figure, in which the ratio of its perimeter to its “distance across” is

157
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also m. As with the circle, which has a constant breadth, namely, its
diameter, this figure also has a constant breadth, although that prop-
erty is not as obvious as with the circle. The figure of which we
speak is very simply constructed. We will introduce it through its
construction. We begin by constructing an equilateral triangle and
then drawing three congruent circles, using each vertex of the tri-
angle as a center and each radius equal to the side of the triangle.

Fig. 6-1

The shaded figure is the subject of this chapter. This shape (seen
isolated in fig. 6-2) is called a Reuleaux triangle, named after the
German engineer Franz Reuleaux (1829-1905), who taught at the
Royal Technical University of Berlin. One might wonder how
Franz Reuleaux ever thought of this triangle. It is said that he was
in search of a button that was not round but still could fit through a
button hole equally well from any orientation. His “triangle” solved
the problem, as we will see in the following pages.
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\

Fig. 6-2

This Reuleaux triangle has many unusual properties. It com-
pares nicely to the circle of similar breadth.! What do we mean by
the breadth of the Reuleaux triangle? We refer to the distance
between two parallel lines tangent to the curve (see fig. 6-3) as the
breadth of the curve. Now look carefully at the Reuleaux triangle
and notice that no matter where we place these parallel tangents,
they will always be the same distance apart—namely, the radius of
the arcs comprising the triangle. (See fig. 6-3.)

1. In the case of a circle, the breadth is the diameter, while for the Reuleaux triangle, it is the
distance across—from a tnangle vertex to the opposite arc
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Fig. 6-3

Another geometric figure having a constant breadth is a circle.
As you can plainly see in figure 6-4, the “breadth” of a circle is its
diameter. The same property holds true for the circle as it did for
the Reuleaux triangle: wherever we place the parallel tangents, they
will always be the diameter-distance apart.

Fig. 6-4
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Before we inspect some of the fascinating properties of this
Reuleaux triangle, such as the fact that it is analogous to the circle
in its ratio of perimeter to breadth also equaling n, we will discuss
a “practical application” of the Reuleaux triangle.

You know that if you were to try to turn a circular screw with a
normal wrench, you would have no success. The wrench would slip
and not allow a proper grip on the circular head of the screw. The
same would hold true for a Reuleaux triangular head. It, too, would
slip since it is a curve of constant breadth, just like the circle 1s.

Fig. 6-5b

So here is a practical application of this situation. During the
summer months, kids in a city like to “illegally” turn on the fire
hydrants to cool off on very hot days. Since the valve of the hydrant
is usually a hexagonal-shaped nut, they simply get a wrench to
open the hydrant. If that nut were the shape of a Reuleaux triangle,
then the wrench would slip along the curve just as it would along a
circle. However, with the Reuleaux triangle nut, unlike a circle-
shaped nut, we could have a special wrench with a congruent
Reuleaux triangle shape that would fit about the nut and not slip.
This would not be possible with a circular nut. Thus, the fire depart-
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ment would be equipped with a special Reuleaux wrench to open
the hydrant in cases of fire, yet the Reuleaux triangle could protect
against playful water opening and avoid water being wasted in this
manner. Just as a matter of curiosity, the fire hydrants in New York
City have pentagonal nuts, which also do not have parallel opposite
sides and cannot be turned by a normal wrench.

The Reuleaux triangle is said to be, like the circle, a closed
curve of constant breadth. That is to say that when one measures the
figure with calipers,? it will have the same measure no matter where
the parallel jaws of the calipers are placed. This is true for a circle
and also for the Reuleaux triangle.

As we showed before, the Reuleaux triangle is formed by
drawing circles, each centered at a different vertex of a given equi-
lateral triangle and each having a radius equal in length to the side
of the equilateral triangle (fig. 6-6).

> g
7

Fig. 6-6

2. An instrument having a fixed and a movable arm on a graduated stock, used for measuring
the diameters of logs and similar objects.
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Here then is the constructed Reuleaux triangle (fig. 6-7).

Fig. 6-7
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Surprisingly, the circumference of the Reuleaux triangle of
breadth r has exactly the same perimeter (i.e., the circumference) as
that of a circle with the diameter equal to the breadth of the
Reuleaux triangle. We shall verify this relationship between the
circle and the Reuleaux triangle.

In figure 6-8 we notice that one “side” of the Reuleaux triangle
is one-sixth of the circumcircle of a regular hexagon, so three times
this side length give us the perimeter. Therefore, the Reuleaux tri-
angle (of breadth r) has a perimeter that equals

3{%(2nr)}: nr

The circle with a diameter of length r has a circumference that
is mr, which is the same as the perimeter of the Reuleaux triangle.

The comparison of the areas of these two figures is quite
another thing. The areas are not equal. Let’s compare the areas.

We can get the area of the Reuleaux triangle in a clever way, by
adding the three circle sectors® that overlap the equilateral triangle
and then deducting the pieces that overlap, so that this region is
actually only counted once and not three times. (This will be a very
useful technique to remember for use later in this chapter.)

The total area of the three overlapping circle sectors

(e

The area of the equilateral triangle?

_r'\3
4

3. A circle sector, which looks like a piece of pie, is a region bounded by two radii of a circle
and the circle’s arc joining them.

4. This is an important formula to remember and will be used rather frequently It is obtained
by using the Pythagorean theorem to find the altitude, and then simply applying the traditional for-
mula for the area of a triangle. A = %bh.
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The area of the Reuleaux triangle’ is

(o)) 5o

The area of a circle with diameter of length r is

Comparing the areas of these two figures of equal breadth indi-
cates that the area of the Reuleaux triangle is less than the area of
the circle. This is consistent with our understanding of regular poly-
gons, where the circle has the largest area for a given diameter.

The Austrian mathematician Wilhelm Blaschke (1885-1962)
proved that given any number of such figures of equal breadth, the
Reuleaux triangle will always possess the smallest area, and the
circle will have the greatest area.

Let’s now go back and see why the Reuleaux triangle has the
same ratio of perimeter to breadth as the circle—namely, n. The
perimeter is comprised of three arcs (see fig. 6-8), each one-sixth of
a circle of radius, say, r. Therefore the perimeter is

3[%(27[?‘)] =nr

The breadth is r. So the ratio of perimeter to breadth is ? =T,
which is exactly what we know about a circle—that the ratio of its
perimeter (i.e., circumference) to its breadth (diameter) is equal to n.

We know a wheel rolls on a flat surface quite smoothly. If the
Reuleaux triangle is “equivalent” to the circle, it, too, should be
able to roll on a flat surface. Well, it can, but it wouldn’t be a
smooth roll because of the “pointed” corners. Yet if furniture

5. We are subtracting two overlapping triangle areas from the three overlapping sectors.
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movers would use a roller in the shape of a Reuleaux triangle
instead of the usual round, circle-shaped roller, the furniture would
not “bounce” the object being moved, but it would roll somewhat
irregularly. Notice that the center point (or centroid) of the rolling
Reuleaux triangle will not stay at a constant parallel path to the sur-
face being rolled on, as is the case for a circle. The end view of
these rolling Reuleaux triangles might look like the following.

Fig. 6-9b

We can make an adjustment to the Reuleaux triangle to give it
rounded corners, and without destroying its properties.

If we extend the sides (length s) of the equilateral triangle that
was used to generate the Reuleaux triangle by an equal amount
(say, a) through each vertex, and then draw six circular arcs alter-
nately with the vertices of the triangle as centers (see fig. 6-10), and
radius a, the result is a modified Reuleaux triangle with “rounded
corners” to allow a smoother roll.

We now need to see that this modified Reuleaux triangle is of
constant breadth and that the ratio of its perimeter to its breadth is &.
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Fig. 6-10

The sum of the lengths of the three smaller “corner arcs” is

3[%(27@]

The sum of the lengths of the three larger “side arcs” is
3{1 27(s + a)]
6

The sum of the six arcs (i.e., the perimeter) is 7 (s + 2a) + a =
7 (s + a). The breadth is (s + 2a), so the ratio of perimeter to breadth
is m. When you would least expect it, &, again, shows up. Compar-
atively speaking, a circle with diameter (s + 2a) has a circumfer-
ence of 7 (s + 2a), the same as the Reuleaux triangle.

Another astonishing property of the Reuleaux triangle is that a drill
bit in the shape of a Reuleaux triangle could bore a square hole rather
than the expected round hole. Or to put this another way, the Reuleaux
triangle is always in contact with each side of a square of appropriate
size. This can be seen below (see fig. 6-11). Remember, however, that
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this drill will not be rotating on a fixed axis; rather, the center of a
Reuleaux triangle rotating in the square almost describes a circle—
more exactly, it consists of four elliptical arcs. (The circle is the only
curve of constant breadth that has a balanced center of symmetry.)

The English engineer Harry James Watt,® who lived in Turtle
Creek in Pennsylvania, recognized this in 1914, when he received a
US patent (no. 1241175), enabling these drills to be produced. The
production of drills that can cut square holes was begun in 1916 by
the Watt Brothers Tools Factories in Wilmerding, Pennsylvania.
Thus, the Reuleaux triangle can be rotated so that it always touches
the sides of a square, and thereby brushes over the sides of the
square and also gets very close to the corners of the square.

Fig. 6-11

6. A descendant of the famous inventor James Watt (1736-1819).
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Fig. 6-12

Felix Wankel (1902-1988), a German engineer, built an internal
combustion engine for a car that was the shape of a Reuleaux tri-
angle and rotated in a chamber. It had fewer moving parts and gave
out more horsepower for its size than the usual piston engines. The
Wankel engine was first tried in 1957 and then put into production
in the 1964 Mazda. Again, the unusual properties of the Reuleaux
triangle made this type of engine possible.

The Energon, in Ulm, Germany, is purported to be the biggest
passive office block in the world. It has the outer shape of a Reuleaux
triangle and is a low-energy building, heated by geothermal energy.
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Fig. 6-13
There are lots of entertaining and useful ideas attached to this
Reuleaux triangle, which is the analogue of the circle, and hence
shares ownership of © with the circle.

n in Sports

Have your ever wondered how the start positions at a track meet are
calculated? Well, this can’t be done without n. The standard track is
400 meters, and the width of each runner’s lane is 1.25 meters. The
track is composed of two straight paths and two semicircular paths.

There are a number of questions that arise in the construction of
a racetrack. How long is each lane of the track? How much of a
head start, v, in meters should each successive runner have after the
runner in lane 1?7 What must the radius of each of the semicircular
parts be in order for lane 1 of the track to be 400 meters long?

We will consider the length of the straight parts of the track to
be a meters and the width of each lane to be b meters.



Applications of 171

As As
Ay b Lane 4 Ay
Ayl b Lane 3 Ay
b Lane 2 Ay
Al b Lane 1 Ay
a
r
r
a
B, B
B, B
B, By
B BY|
Bs Bs

Fig. 6-14

(Note: The measurement shall be made 20 cm from the inside edge
of each successive lane.)

We begin by measuring lane 1, and then, for each successive
lane, we make the proper adjustments as shown below.’

lane 1: C,=2a+2n(r+.2)=2a+2nr+2n * .2;v,=0

lane2: C,=2a+2n(r+ b+ .2)=2a+2nr+2nb +2n * .2;
v, =2nb

lane 3: C;=2a+2n(r+2b+.2)=2a+2nr +4nb +2n * 2; v,
=4nb

lane 4: C,=2a+2n(r+3b+.2)=2a+2nr+6nb+2n * 2;v,
= 6nb

Witha=100m, b=1.25m, and C, =2a +2nr +2n * .2, we get

2(a + nr + .2n) = 400; therefore, r = %9 - % = 50(5)—,:” =31.63 m

7.20cm=.2m
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The handicaps have been calculated in the following way:
v,=2nb=7.85m
v, =4nb=1571m
v, =6nb=23.56m

Remember, none of this would have been possible without
our trusty !

Not only does & play an ever-important role in finding areas
of circles and sections of circles, but now we must use some
interesting techniques that will result in perhaps new ways of
“looking” at some problem situations—that is, “backing into”
the solution, a somewhat indirect method. As we go along from
problem to problem, the technique will become more obvious
and, we hope, familiar.

A Spiral Formed by Semicircles

We begin by looking at the figures below (fig. 6-15). They
appear to be spirals, and can be considered so. However, they
are unusual in that they are created by successively larger semi-
circles. Using the ubiquitous ©, we will be able to measure
aspects of these spirals: length and area. In figures 6-15a and 6-
15b, the points M and M are at a distance a from each other
and are alternately the respective centers of semicircles. M is
the center of the “bottom” semicircles, and M is the center of
the semicircles lying above the horizontal diameter.
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Fig. 6-15b

With the help of our trusty n, we can find the length of the spiral
and the areas of the semi-annuli.® We will calculate each portion sep-
arately. Semicircle ¢, (M, a) refers to the semicircle with center M,
and radius length a. The table below shows the calculation for each.

8. An annulus is the region between two concentric circles. The semi-annulus is the region
between concentric semicircles
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Arc Area of the Area of the

Semicircle length semicircles semi-annuli

| 1 |
cM,a) b =mnea w1=5T° a? Al=51t-a2 =1t5(12
c,(M,2a) b=2mea A_,= % e (20 A,=2nea’ = 2na?

1
c,(M,3a) b=3nea A, = ST (3a? A, =A_,-A_, =4nd’
ciMy4a) b=dnea A =ime (4af A=A, -A,, =6md
cs(M,50) b=5mea A = me (Saf A=A A, =8
(M, 6a) b=6nea A =>me (6a) A=A -A,, =10
(M, 7a) by=Tnea Ag=ime (Taf A=A -A s =12
cMy8a) b=8nea A=sme Baf A=A -A  =lned
(above)
c(M,8a) b=8nea A = me (Baf A=A -A, = nd
(below)

The length of the spiral is the sum of the b’s
1+2+3+4+5+6+7+8+8)na=44na

We can test to see if we calculated the areas of the semi-annuli
correctly by adding them to get the area of the largest circle.

A+A+A+A+A+A

N

=(5+2+4+6+8+10+12+14+§)1w

=64 na® = n(8a)? =

Area circle 8

+A+A+A

1na? + 2na? + 4na? + 6na® + 8na? + 10na? + 12na? + 14na? + na

What is nice here is that with n’s help we can calculate the

length and area of the spiral.
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The Unigue Seven-Circles Arrangement

Try taking seven coins of the same size and placing them so that six
of them are tangent to the seventh one, as shown below. (This can
only be done with seven congruent circles.)

Fig. 6-16

You will discover as we go further into this section that the reason
that this can only be done with seven congruent circles is that if you
join the radii at the points of tangency, you will form a regular
hexagon, This is analogous to drawing a circle with a pair of com-
passes and then finding out that if you mark off consecutively the
radius length along the circumference of the circle, it will bring you
back exactly to your starting point after six segments.

Consider the configuration in figure 6-17. We might want to
determine the area of the nonshaded regions between the congruent
circles. There are several ways of finding the area of the nonshaded
regions. We will offer one here.
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Fig. 6-17a Fig. 6-17b

Consider the equilateral triangle surrounding one of these non-
shaded regions. The area of a nonshaded region can be obtained by
finding the area of the triangle and subtracting three sectors—each
one-sixth of a circle (since it has a 60° angle). If we let the radius of a
small circle equal r, we get one of the nonshaded regions as follows:

RCIRLRAN:

Areaeq triangle
1 2 r .
A TeQ . pded sectors =3 ( g nr- | = —2—
2 2
r r
= b o B
A rea(me nonshaded region =F 3 - 2 == 2 (2 \/5 7[)

Area,,, edregions = 6[;(2\5 - 72:)] =3 (2\/5 - n’)

To find the area of the six-pointed figure in the center (see fig.
6-18a), we merely add the area of one of the small circles to the
sum of these nonshaded regions:

Area =nr’ +3n’ (2\/§—ﬂ)= 2r? (3\/5—75)

six-pointed figure
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Fig. 6-18a

N

Fig. 6-18b

Once a circle is placed around the six outside circles, there are
additional nonshaded regions. To get the total area of these non-
shaded regions inside the larger circle, we simply subtract the total
area of the seven small circles from the larger circle. (3r)? n — 7Tnr?
= 2nr2. Thus, with the help of n, we were able to show that the
remaining area, when the seven circles are taken out of the larger
circle, is the equivalent of two small circles.
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A “Mushroom” Shape
The following figure consists of a quadrant (or quarter circle) and

two overlaid semicircles, whose diameters are as big as the radius
of the quarter circle.

Fig. 6-19

What would you guess is the relationship between the shaded
regions marked A and B?
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The answer may become clearer if we complete the various circles.

Fig. 6-20

Since the big circle has double the radius of the little circle, its
area is four times as big.’

= 4(rer?) = 7(2r)?

Area big circle =4 * Area small circle

So the sum of the areas of the four inner circles is the same as
the area of the outer circle.

We notice that there are four overlapping regions (marked B), and
there are four regions in the larger circle that are not included in the
smaller circles. Since the B regions are used twice and the A regions
are not used at all in the sum of the area of the four smaller circles (and
there is complete symmetry), we can conclude that each of the B
regions must be equal in area to each of the A regions—recalling that
the sum of the areas of the four smaller circles equals the area of the
larger circle. This type of reasoning is very important in mathematics.

9. There is an important concept in geometry, namely, that two similar figures have areas in a
ratio that is the square of their ratio of similitude (the ratio of their corresponding sides). This idea is
used here since all circles are similar to each other
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We can also look at this problem in another way, one that may
require a bit less abstraction, but some more work. Elegance has its price!

Fig. 6-21

Consider the figure above, where perpendicular radii of length
r are drawn in the two semicircles. We can represent the various
areas as follows:

First, to find the area of region A, we will subtract from the
large quarter circle (which includes regions A, D, D, E, E, and B)
the two smaller quarter circles and the small square (this includes
regions D, D, E, E, and B).

Area , = %(47:#)-[2(%7:#} r’]

T
=grt——rt-r?
2

)
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To find the area of region B, we add the two small (overlapping)
quarter circles (this includes regions B, E, B, and E) and subtract
the square (including regions E, E, and B) from this sum.

So we can clearly see that the two regions A and B have the
same area.

Over the next few pages we will be working on some unusual
shapes. They will be formed by circle arcs inside a square. The fol-
lowing figures will foreshadow the ensuing discussion. Since it is
said that a picture is equivalent to a thousand words, we will let
these figures speak for themselves.

.

Fig. 6-22a Fig. 6-22b Fig. 6-22¢ Fig. 6-22d

In figure 6-22a, the darker shaded region is a quarter circle of
radius a. Therefore, to find this area we take one-quarter of the area
of the circle. Thus, the area is %naz, To get the area of the lighter
shaded region, we merely subtract the area of the quarter circle
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from the area of the square to get az—i ma® = az('—f). This tech-
nique will be used throughout this exploration of the areas of the
strange regions we will be considering.

A a

| \

!

| \ |

[ A 9 |

i 2 #%

Ai ~a . B
Fig. 6-23

In figure 6-23 (where ABCD is a square, and two quarter circle arcs
BD are drawn), we are asked to find the area of the shaded region (the
football shape)}—comprised of two overlapping quarter circles. The
straightforward way (which most people would probably use) is to find
the area of sector ADB and subtract the area of right A ADB, resulting
in the area of the segment (half the football shape), which is then dou-
bled to get the area of the shaded region.

A more elegant method (we believe) is to add the areas of
sectors ADB and CBD to get the area equal to A| + 24, + A,. If
we now subtract the area of the square from this sum, we get the
area of the shaded region.
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We will now carry out this plan:

Area sector ADB = %m’-
Area sector CBD = % na?

Sum of areas of sectors ADB + CBD = %naz
[Notice that the shaded region is used twice in the addition.]

Subtract the area of square ABCD to get % - a*=a? (g— l)
D

e,
6
A \g/
A, Ag
A a
2 " A3
A
1
A a m 2 8
2 2
Figo 6'24

In figure 6-24, we have two quarter circles centered at vertices
A and B of square ABCD, with side length a. We seek to find the

area of region A.. The segment EM is perpendicular to AB at its
midpoint M. AAEB is equilateral.

By the Pythagorean theorem, EM = 3‘2/_—3 so the area of AAEB
1 a3 a3
-5 =2
20 2 4

10. This is the well-known and frequently used formula for finding the area of an equilateral tri-
angle with side length given. In this case the side length is a.
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Now to the solution of the problem: twice the area of sector
AEB minus the area of AAEB gives the area of A; + A, + A,

Let’s do that now.

Since m ZAEB = 60°, the area of sector AEB = ™.

6

Double this is ”T"z Subtracting the area of AAEB gives us

ma’ _ V3
3 4
2 2
We now have the area of A, +A2+A3=E;—1—— “;/5.

We use a similar technique; however, this time we will find twice
the area of quarter-wide sector ADB and subtract the region we just
found: A, + A, + A;. In other words, we again subtract the doubly
used overlap region to get the shaded region. What is then left to
complete the square is A, which is the region whose area we
sought in the first place. The problem will then be solved.

Now for the computation:

The area of quarter circle sector ADB = ma’ , and double that is ”7‘12 .

4
We must now subtract the overlapped region, used twice:

ma® ma®  a*\3

+
2 3 4

And then subtract this from the area of the square to get

5 [mf ra’ azx/gj
a’ - +

2 3 4
_ . md_a'\3
6 4
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We will be needing the area of this region (A,) for the next
problem, which may be a bit challenging. However, with the work we
have already done and with the technique we have used a few times
in these earlier problems—that of subtracting the overlapped region
(used twice)—we should have no difficulty solving the problem.

D .

F;
A & B
Fig. 6-25

In figure 6-25 we have our quarter circular sectors with centers at
the vertices of square ABCD and radius a, intersecting to form region
F,, whose area we seek. In the previous problem, we had just found
the area of region F,. We can get the area of the total shaded region,
F, + F, + F, + Fy + F,, by subtracting the areas of the four unshaded
regions (each equal to F,) from the area of the square ABCD.
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This is done as follows:

We can also get the area of this shaded region by finding the
sum of the areas of the two overlapping “football”’-shaped regions
and subtracting the area of the overlap regions F, (which was used
twice). We found the area of this football shaped region on page
183 to be a*(5 - 1).

Twice that is a?(« - 2), which is the area of the shaded region
plus the region F, (which was used twice). So, all we need to find
the sought-after region is to subtract the shaded region, F,, from
twice the “football” region.

a2(7z—2)—a2(2?ﬂ—3+\/§)
=a2(§+l—\/§)

This was no mean feat. Yet you can see the role that &t plays in these
rather unusual excursions into finding the areas of strange regions.

A “Dolphin” Shape

The side of the square lattice (fig. 6-26) has a unit measure of a. We
would like to find the perimeter and the area of this strange-looking
shape, which we will call a dolp<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>