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Introduction

ew mathematical concepts, if any, have an impact on as many aspects of
our visual and intellectual lives as the golden ratio. In the simplest form,
the golden ratio refers to the division of a given line segment into a
unique ratio that gives us an aesthetically pleasing proportion. This proportion is
formed in the following way: The longer segment (L) is to the shorter segment
(S) as the entire orlglnal segment (L+S) is to the longer segment. Symbolically,

this is written as s = ¢ .

Let us consider a rectangle whose length is L and whose width is S, and whose
dimensions are in the golden ratio. We call this a golden rectangle, which
derives its name from the apparent beauty of its shape: a view supported through
numerous psychological studies in a variety of cultures. The shape of the golden
rectangle can be found in many architectural masterpieces as well as in famous
classical works of art.

When the golden ratio is viewed in terms of its numerical value, it seems to
infiltrate just about every aspect of mathematics. We have selected those
manifestations of the golden ratio that allow the reader to appreciate the beauty
and power of mathematics. In some cases, our endeavors will open new vistas
for the reader; in other cases, they will enrich the reader's understanding and
appreciation for areas of mathematics that may not have been considered from
this unusual vantage point. For example, the golden ratio is a value, frequently
referred to by the Greek letter ¢ (phi), which has the unique characteristic in that

it differs from its reciprocal by 1, that is, ¢ =#=1 This unusual characteristic
leads to a plethora of fascinating properties and genuinely connects ¢ to such
familiar topics as the Fibonacci numbers and the Pythagorean theorem.

In the field of geometry, the applications of the golden ratio are practically
boundless, as are their beauty. To fully appreciate their visual aspects, we will
take you through a journey of geometric experiences that will include some
rather unusual ways of constructing the golden ratio, as well as exploring the
many surprising geometric figures into which the golden ratio is embedded. All
this requires of the reader is to be merely fortified with nothing more than some



elementary high school geometry.

Join us now as we embark on our journey through the many wonderful
appearances of the golden ratio, beginning with a history of these sightings
dating from before 2560 BCE all the way to the present day. We hope that
throughout this mathematical excursion, you will get to appreciate the quotation
by the famous German mathematician and scientist Johannes Kepler (1571—
1630), who said, “Geometry harbors two great treasures: One is the Pythagorean
theorem, and the other is the golden ratio. The first we can compare with a heap

of gold, and the second we simply call a priceless jewel.”X This “priceless jewel”
will enrich, entertain, and fascinate us, and perhaps open new doors to
unanticipated vistas.



Chapter 1

Defining and Constructing
the Golden Ratio

As with any new concept, we must first begin by defining the key elements. To
define the golden ratio, we first must understand that the ratio of two numbers,

or magnitudes, is merely the relationship obtained by dividing these two
1

quantities. When we have a ratio of 1:3, or 3, we can conclude that one number
is one-third the other. Ratios are frequently used to make comparisons of
quantities. One ratio stands out among the rest, and that is the ratio of the lengths
of the two parts of a line segment which allows us to make the following
equality of two ratios (the equality of two ratios is called a proportion): that the
longer segment (L) is to the shorter segment (S) as the entire original segment

L L+§
(L+S) is to the longer segment (L). Symbolically, this is written as 5~ L .
Geometrically, this may be seen in figure 1-1:
A P B
2 x r
Y A
L S
Figure -1

This is called the golden ratio or the golden section—in the latter case we are
referring to the “sectioning” or partitioning of a line segment. The terms golden
ratio and golden section were first introduced during the nineteenth century. We
believe that the Franciscan friar and mathematician Fra Luca Pacioli (ca. 1445—
1514 or 1517) was the first to use the term De Divina Proportione (The Divine
Proportion), as the title of a book in 1509, while the German mathematician and
astronomer Johannes Kepler (1571-1630) was the first to use the term sectio
divina (divine section). Moreover, the German mathematician Martin Ohm
(1792-1872) is credited for having used the term Goldener Schnitt (golden

section). In English, this term, golden section, was used by James Sully in 1875.1

You may be wondering what makes this ratio so outstanding that it deserves
the title “golden.” This designation, which it richly deserves, will be made clear
throughout this book. Let's begin by seeking to find its numerical value, which



will bring us to its first unique characteristic.

L
To determine the numerical value of the golden ratio § we will change this

L E¥S I f.+£ . . o o Il
equations L ors L to its equivalent, when ™ ™ 5, to get=: - x.

We can now solve this equation for x using the quadratic formula, which you

may recall from high school. (The quadratic formula for solving for x in the

: : b +J—4
general quadratic equation ax? + bx + c = 01is*~ . See the appendix for

a derivation of this formula.) We then obtain the numerlcal value of the golden

i T_]-I:-\/g
ratio: S 5 &

which is commonly denoted by the Greek letter, phi: ¢,

L _1+ J_ 1+2.236067977499789696409173668731276235440
S 2 2

,;3}:

~3.236067977499789696409173668731276235440
2

= 1.61803.
e $.]
Notice what happens when we take the reciprocal of 5, namely 7 ¢:
1 § 2

gé L 1+45 5
-
which when we multiply by 1 in the form of i1-4/5, we get
2 1=45_2:(1=+5) _2:(1=5) _1-45 _5-1_ J§+|_]_¢_]

1445 1—5  1-5 —4 =, 2 2

= 0.61803.

But at this point you should notice a very unusual relationship. The value of ¢
| |

and ¢ differ by 1. That is, ¢ %=1 From the normal relationship of reciprocals,

p-L=1

numbers, ? and #, whose difference and product is 1—these are the only two
numbers for which this is true! By the way, you might have noticed that

Y5+l W5-1_

.~
+—=4/5, since 1 =a/5.
435 A 5 5 Y,

1,
the product of ¢ and 7 is also equal to 1, that is, . Therefore, we have two




We will often refer to the equations x> — x — 1 = 0 and x*> + x — 1 = 0 during the
course of this book because they hold a central place in the study of the golden
ratio. For those who would like some reinforcement, we can see that the value ¢

satisfies the equation x> - x — 1 = 0, as is evident here:
e \E+1"_~£+1_1:5+2\E+1_2(\/§+1)_1
' 2 2 4 4 4
_ 5425 +1-25-2-4 _
7 .
The other solution of this equation is
-5 _ J5-1_ 1
2 2 @

while —¢ satisfies the equation x> + x — 1 = 0, as you can see here:

: > [z
(=Y +(—¢)— 1 =¢:3—¢—1=("G+ 1.] _No+l

==
2 2

1
The other solution to this equation is ¢.

Having now defined the golden ratio numerically, we shall construct it
geometrically. There are several ways to construct the golden section of a line
segment. You may notice that we appear to be using the terms golden ratio and
golden section interchangeably. To avoid confusion, we will use the term golden
ratio to refer to the numerical value of ¢ and the term golden section to refer to
the geometric division of a segment into the ratio 0.

GOLDEN SECTION CONSTRUCTION 1

Our first method, which is the most popular, is to begin with a unit square
ABCD, with midpoint M of side AB, and then draw a circular arc with radius
MC, cutting the extension of side AB at point E. We now can claim that the line
segment AF is partitioned into the golden section at point B. This, of course, has
to be substantiated.
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Figure |-2

To verify this claim, we would have to apply the definition of the golden section:
AB _AE

BE ~ 4B, and see if it, in fact, holds true. Substituting the values obtained by
applying the Pythagorean theorem to AMBC as shown in figure 1-2, we get the

MC*=MB*+BC*= [l] F12=tt] =§; therefore, MC =£.
following: 2 4 4 >
It follows that

BE = ME — MB = MC — MB—£—%—\/—_]

2 ,and

T T _
AE=AB+BE=1+ Y2=1 _2 .35 1:J5+1+
2 2 2

AB _ AE
We then can find the value of BE ~ 43, that is,

J§+1
2

|
N 1

which turns out to be a true proportion, since the cross products are equal. That
is,




We can also see from figure 1-2 that point B can be said to divide the line

segment AE into an inner golden section, since
AB 1 o Vo -1 1

AE | N5-1 V541 2 4

2 2
Meanwhile, point E can be said to divide the line segment AB into an outer
: {5 =]
AE T 5+l ;
golden section, since A5 | 2

You ought to take notice of the shape of the rectangle AEFD in figure 1-2. The
S +1
AE _ 5 _\5+1_
ratio of the length to the width is the golden ratio: EF 1 2

-

This appealing shape is called the golden rectangle, which will be discussed in
detail in chapter 4.

GOLDEN SECTION CONSTRUCTION 2

Another method for constructing the golden section begins with the construction
of a right triangle with one leg of unit length and the other twice as long, as is
shown in figure 1-3.4 Here we will partition the line segment AB into the golden
ratio. The partitioning may not be obvious yet, so we urge readers to have
patience until we reach the conclusion.




With AB = 2 and BC = 1, we apply the Pythagorean theorem to AABC. We then

find that AC =+/2” +1° = /5. With the center at point C, we draw a circular arc
with radius 1, cutting line segment AC at point F. Then we draw a circular arc
with the center at point A and the radius AF, cutting AB at point P.
Because AF =5 -1, we get AP =A:5-1 Therefore,
BP=2—(\5-1)=3-4/5.
51

AP
To determine the ratio 37, we will set up the ratio 3-+/5, and then to make
some sense of it, we will rationalize the denominator by multiplying the ratio by

3+'\.l"§

1 in the form of 3++/5.

We then find that

_»\.I'E—lI3}_’\?":’:_3«_"5+_5_—3—’\.E_2-_\JE+3_2(\;5"_]) ﬂ,!'f,_‘i_+|
eals duds A5 0

which is the golden ratio! Therefore, we find that point P cuts the line segment
AB into the golden ratio.

GOLDEN SECTION CONSTRUCTION 3

We have yet another way of constructing the golden section. Consider the three
adjacent unit squares shown in figure 1-4,. We construct the angle bisector of £
BHE. There is a convenient geometric relationship that will be very helpful to us
here; that is, that the angle bisector in a triangle divides the side to which it is

drawn proportionally to the two sides of the angles being bisected.2 In figure 1-4
BH _ BC
we then derive the following relationship: £+~ ¢t. Applying the Pythagorean

theorem to AHFE, we get HE=~/5. We can now evaluate the earlier proportion
1 x

by substituting the values shown in figure 1-4: J5 :ﬁ—-f, from which we get
2 V541
¥ g

J5+1, which is the reciprocal of 2

Therefore, X = ~0-61803

X=




Figure |-4
Thus, we can then conclude that point B divides the line segment AC into the
AB_1_5+1_ 4 61803
golden section, since BC x 2 , the recognized value of the

golden ratio.

GOLDEN SECTION CONSTRUCTION 4

Analogous to the previous construction is one that begins with two congruent
squares as shown in figure 1-5. A circle is drawn with its center at the midpoint,
M, of the common side of the squares, and a radius half the length of the side of
the square. The point of intersection, C, of the circle and the diagonal of the
rectangle determines the golden section, AC, with respect to a side of the square,
AD.

B
C
1 M
A 1 D 1
Figure |-5

1 V3
With AD =1 and DM = 2, we get AM = "3 by applying the Pythagorean theorem
to triangle AMD. (See fig. 1-6.) Since CM is also a radius of the circle, CM =



AC=AM+CM = £ I

1
DM = 2. We can then conclude that 2

\/§+I=

-

b | —

2

Furthermore,

B+l 521 ]
=AD—/ =+/5— = i
AC=AB-AC=5 - T

We have thus constructed the golden section and its reciprocal.

Figure 1-6

GOLDEN SECTION CONSTRUCTION 5

In this rather simple construction we will show that the semicircle on the side
(extended) of a square, whose radius is the length of the segment from the
midpoint of the side of the square to an opposite vertex, creates a line segment
where the vertex of the square determines the golden ratio. In figure 1-7, we
have square ABCD and a semicircle on line AB with center at the midpoint M of

AB and radius CM. We encountered a similar situation with Construction 1,
AB _ AE _
where we concluded that BE ~ ¢ and 48 7.



F A M B E
Figure |-7

However, here we have an extra added attraction: DE and BC partition each
other into the golden section at point P. This is easily justified in that triangles
DPC and EBP are similar and their corresponding sides, DC and BE, are in the

golden ratio. Hence, all the corresponding sides are in the golden ratio, which
CP_DP _
here is PB~ PE ~""

GOLDEN SECTION CONSTRUCTION 6

Some of the constructions of the golden section are rather creative.® Consider the
inscribed equilateral triangle ABC with line segment PT bisecting the two sides
of the equilateral triangle at points Q and S as shown in figure 1-8.



Figure |-8

We will let the side length of the equilateral triangle equal 2, which then

provides us with the segment lengths as shown in figure 1-8. The proportionality
RS _AS - , :

there gives us €D~ AC* which then by substituting appropriate values yields

RS _1 1

T ~2’and so RS =12.

A useful geometric theorem will enable us to find the length of the segments
PQ = ST = x due to the symmetry of the figure. The theorem states that the

products of the segments of two intersecting chords of a circle are equal. From
PS-ST=AS-SC

x+1D-x=1-1

¥+x=1=0

that theorem, we find ) 2
Therefore, the segment QT is partitioned into the golden section at point S, since

0S _1_ 2 541

1.61803,
ST x +5-1 7

which we recognize as the value of the golden ratio. We can generalize this



construction by saying that the midline of an equilateral triangle extended to the
circumcircle is partitioned into the golden section by the sides of the equilateral
triangle.

GOLDEN SECTION CONSTRUCTION 7

This is a rather easy construction of the golden ratio in that it simply requires
constructing an isosceles triangle inside a square as shown in figure 1-9. The
vertex E of AABE lies on side DC of square ABCD, and altitude EM intersects
the inscribed circle of AABE at point H. The golden ratio appears in two ways
here. First, when the side of the square is 2, then the radius of the inscribed circle

EM — ﬁb

1 =
r = ¢, and second when the point H partitions EM into the golden ratio as #u

o

=l

(=

A

Figure |-9
To justify this construction, we will let the side of the square have length 2.
This gives us BM = 1 and EM = 2. Then, with the Pythagorean theorem applied
to triangle MEB, we derive AE=BE=~/5 whereupon we recognize that
GE=+/5-1(fig. 1-10) 2



A M

Figure 1-10

For the second appearance, again we apply the Pythagorean theorem, this time to
AEGI, giving us EP2 = G2 + GE2. Put another way, (2-7)°=r"+(/5-1)’;
therefore, 4—4r+r=r’+5-2+/5+1. This determines the length of the radius

5=l _d

of the inscribed circle 2 ¢

Now, with some simple substitution, we have EM = 2 and HM = 2r, yielding the
7Y g B

ratio 7 =2 == 9.

GOLDEN SECTION CONSTRUCTION 8

A somewhat more contrived construction also yields the golden section of a line
segment. To do this, we will construct a unit square with one vertex placed at the
center of a circle whose radius is the length of the diagonal of the square. On one
side of the square we will construct an equilateral triangle. This is shown in

figure 1-11.
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Again applying the Pythagorean theorem to triangle ACD, we get the radius of

the circle as 2, which gives us the lengths of AD, AG, and AJ. Because of

symmetry, we have BH = CF = x. Again applying the theorem involving

intersecting chords of a circle (as in Construction 6), we get the following:
GB-BJ=HB-BF

W2+ D2-D)=x(x+1)

_A5-1
=
Once again we find the segment BF is partitioned into the golden section at point
C, since

. .
BC _1_ 2 _:‘EH:],E)]SO?)

CF x +f5-1 2 , which we recognize as the value of the
golden ratio.

GOLDEN SECTION CONSTRUCTION 9

We can derive the equation x*> + x — 1 = 0, the so-called golden equation, in a
number of other ways, one of which involves constructing a circle with a chord
AB, which is extended to a point P so that when a tangent from P is drawn to the



circle, its length equals that of AB. We can see this in figure 1-12, where PT =
AB=1.

Ei )
gure |-12

Here we will apply a geometric theorem which states that when, from an
external point, P, a tangent (PT) and a secant (PB) are drawn to a circle, the
tangent segment is the mean proportional between the entire secant and the

external segment, that is, 7~ 74. This yields PT?> = PB - PA, or PT?> = (PA +
AB) - PA. If we let PA = x, then 1% = (x + 1)x, or x> + x — 1 = 0, and, as before,
we can conclude that point A determines the golden section of line segment PB,
since the solution to this equation is the golden ratio.

The next method we present is a bit convoluted. Yet, it begins with the famous
3-4-5 right triangle — probably one of the earliest to be recognized as a true

right triangle, going back to the so-called rope-stretchers of ancient Egypt.2

GOLDEN SECTION CONSTRUCTION 10

In figure 1-13 we have the 3-4-5 right triangle ABC. The bisector of ZABC
intersects side AC at point G. With G as its center, a circle of radius GC is drawn
and can be shown to be tangent to both BC and AB.



Figure [-13

As we noted earlier, the bisector of an angle of a triangle divides the side to
AG _ AR 3

which it is drawn proportionally to the angle's two sides. Therefore, G¢ ™~

AGZ%
3GC.
B =53
With AG + GC = 4, we get 3 3GC+GC= GC 4, or GC__ So we can

determine that A0 = %
3
GC = GD = GE = GF are radii of the circle, so we then have FG 8,

5=3
GE=3 Applying  the  Pythagorean theorem to AGBC, we

9 _ 45 i
GB* BC +GC _9+ 4. Therefore, GB_?S.
We are now ready to show that the point E partitions the line segment BF into

the golden ratio:

BC ~

and

BF _GF+GB 2 2[ f+1 < TEII

FE GF+GE 33
gD

which by now is easily recognizable as the golden ratio.
A similar construction with a 3-4-5 right triangle was discovered by Gabries

Bosia while pondering the knight's moves in chess.2

GOT.DEN SECTTION CONSTRIICTTON 11
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In figure 1-14, we see three concentric circles with radii of lengths 1, 2, and 4
units, respectively. PR is tangent to the inner circle at T and cuts the other circles
at points P, Q, and R.

M1 /A1 B 2 |C

Figure I-14
With AM = AB =1 and BC = 2, we apply the Pythagorean theorem to AMQT and

AMRT, and get @T=V2"=1"=V3 and RT=4" =17 =/15.
As we have PR:RT+PT:RT+QT:dﬁJrﬂ:xﬁ(«EH}, and
PQ=PT+QT=2*E, we derive

which is again recognizable as the golden ratio.

GOLDEN SECTION CONSTRUCTION 12

We have yet another way of constructing the golden section, this time with three
circles. Consider the three adjacent congruent circles with radius r = 1, as shown

in figure 1-15.



Figure [-15

In figure 1-15, we have AE = 2 and BE = 4. We apply the Pythagorean theorem
to AABE to get AB=+2"+4" =+/20 =2+/5. Because of the symmetry, AC = BD
and CD = 2, we then have AB = AC + CD + BD = 2AC + BD = 2AC + 2.

Therefore, 2AC+2=2+5. It then follows that AC=+v5-1 and
AD:AB—BD:AB—AC:2\."'5—1(-\3'3— 1\}2\."'5'}' 1
AD =\a’:}+l ~1.61803
The ratio CD 2 again denotes the golden ratio.

You may notice that each time we have been using a unit measure as our
basis. We could have used a variable, such as x, and we would have gotten the
same result; however, using 1 rather than x is just a bit simpler.

GOLDEN SECTION CONSTRUCTION 13

When we place the three equal unit circles tangent to each other and tangent to
the semicircle, as shown in figure 1-16, we have the makings for another
construction of the golden section.



Figure 1-16
First, we note that AM = BM = JM = KM = LM = R, and GH = GM = CE = DF
(=r)=1(and also CM =DM =EG =FG =2)and EM =R —r =R - 1. When we
apply the Pythagorean theorem to ACEM in figure 1-16, we get EM? = CM? +
CE?, or (R—1)>=2%2+12,
When we solve this equation for R, we get

R-2R+1
R*-2R-

5
4=0
R=1+4/5.

Since a radius cannot be negative, we only use the positive root of R; therefore,
R=1+4/5.

RS
We then take the ratio =5+ L Yet, half this ratio will give us the golden
ratio:

%(5]:\/3;1

I

i T O =  ~1.61803.
Therefore, M 2r 2 2

HM CM
Additionally, the ratios #/ and 4c¢ also produce the golden ratio, since with

R-2r=R-2=1+5-2=+/5-1, which then gives us



HM _CM _ 2r _ 2 5+l
HI AC R-2r 5-1 2

GOLDEN SECTION CONSTRUCTION 14

Another construction of the golden section was popularized by Hans Walser,12
who placed the three circles on a coordinate grid as shown in figure 1-17. This
construction can be further expanded as we show here. A circle with radius
length 1 is enclosed by two circles of radius length 3.

I P e |

) TN
PN

Figure 1-17

With AE = EF = GH = 3 and BC = 2, we can find the length of AM by applying
the Pythagorean theorem to AAEM, whereupon AM = V3 —2%=4/5. Since
AB=AM +BM=~/5+ 1, then we can establish

AB _5+1
BC 2
which is again recognizable as the golden ratio.

= ¢=1.61803,

BC
Also, the ratio “ic demonstrates the golden section:

BC_ BC _ 2 A5+l
AC ANE-CM ~5-1 9




We now present the classic construction of the golden section based on the work
of Euclid, which is a pleasant variation of the first construction we offered.
Perhaps one of the greatest contributions to our knowledge of mathematics is
Elements by Euclid, a work divided into thirteen books that covers plane
geometry, arithmetic, number theory, irrational numbers, and solid geometry. It
is, in fact, a compilation of the knowledge of mathematics that existed up to his
time, approximately 300 BCE. We have no records of the dates of Euclid's birth
and death, and little is known about his life, though we do know that he lived
during the reign of Ptolemy I (305-285 BCE) and taught mathematics in
Alexandria, now Egypt. We conjecture that he attended Plato's Academy in
Athens, studying mathematics from Plato's students, and later traveled to
Alexandria. At the time, Alexandria was the home to a great library created by
Ptolemy, known as the Museum. It is believed that Euclid wrote his Elements
there since that city was also the center of the papyrus industry and book trade.
To date, Elements, after over one thousand editions, presents synthetic proofs for
his propositions and thereby set a standard of logical thinking that impressed
many of the greatest minds of our civilization. Notable among them is Abraham
Lincoln, who carried a copy of Elements with him as a young lawyer and would
study the presented propositions on a regular basis to benefit from its logical
presentations.

GOLDEN SECTION CONSTRUCTION 15

So now we come to Euclid's construction of the golden section. In figure 1-18, a

1
right triangle, AABC, is constructed with legs of length 1 and 2. An arc is drawn
with center C and radius of length BC, and AC is extended to point D. A second
arc is drawn with center A and tangent to the first arc, naturally passing through

BC=3

point D. Using the Pythagorean theorem, we can see that 7 ; we will let

the length of AD be x.



ey E
1 2
=
_| 1 Illi x‘“‘x
A P E] tx /B
f': /;
.".I z/
I i
X ff //
e g
~— 1 =
Figure |-18
r:AE:AD:CD—AC:BC—AC:%—%=J§2_I.and
BE:AB—AE=1—I=1—‘/§_'=3_£.
2 2
This sets up the ratio
J5-1
AE_~ 5 Ai-1_45-1 3+45
BE 3-<f5 3-af5 3-8 3445
2
=3‘/§+95_53_\/§=2‘E+2=‘E;l=¢a~1.61803.

which is again recognizable as the golden ratio.

GOLDEN SECTION CONSTRUCTION 16

The last in our collection of constructions of the golden section is one that may
look a bit overwhelming but actually is very simple, as it uses only a compass!



All we need is to draw five circles.11

Figure [-19

In figure 1-19, we begin by constructing circle c¢; with center M; and radius r; =
r. Then, with a randomly selected point M, on circle c¢;, we construct a circle, ¢,
with center M, and radius r, = r; naturally M;M, = r. We indicate the points of
intersection of the two circles, c¢; and ¢,, as A and B. Constructing circle c; with
center B and radius AB = ry will intersect circles c¢; and ¢, at points C and D.
(Note that the points D, M, M,, and C are collinear.) We now construct circle c,
with center at M, and radius M,C = r, = 2r. Finally, circle c5 with center M, and
radius M, D = rg = r, = 2r is constructed so that it intersects circle c, at points E
and F.



Ei =
Figure 1-20

From figure 1-20, as a result of obvious symmetry, AE = BF, AF = BE, AM =
AB _ BE _
BM, EM = FM, and CM = DM, MM, = MM,. We can then get EE‘TS"qb (or

AB _ AF _ g
analogously, BF ~ 48~ ¥).

This can be justified rather simply by inserting a few line segments. The
radius of the first circle is r; = r = AM;, and the radius of the fourth circle is r, =

2r = CM, = EM,. We can apply the Pythagorean theorem to AAMM, to get AM,?
= AM? + MM,?, or

P =AM’ +(1J .
2
which then determines AM= 5+/3, Then, applying the Pythagorean theorem to

(2r) = EM? +(’E]

AEMM),, we get EM,? (= CM,?) = EM? + MM,?, or '
whereupon EM =345,

We now seek to show that the ratio we asserted above is in fact the golden
ratio.
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Now the second ratio that we must check is

BE _EM +BM _EM +AM
AB AM +BM  24M

r ¥
=) ]5+§\E=«/§h/§+1)=\/§+1=
2-%\/5 243 2
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In both cases we have shown that the golden ratio is in fact determined by the
five circles we constructed.

We should not want to give the impression that we have covered all possible
constructions of the golden section. There currently exist about forty such
constructions of the golden section—with new methods being developed
continually. As we mentioned, there exist a host of curious geometric
configurations where the golden section can be found, but we shall leave these
hiding places for later in the book. Notice, however, that our goal for
construction of the golden section is to somehow get a length equal to V5. For
now, we simply want to introduce the numerical value of the golden ratio and its
sightings algebraically and geometrically, as it can be seen partitioning a line
segment.



Chapter 3

The Numerical Value
of the Golden Ratio
and Its Properties

In the previous chapters, we have established that the golden ratio between a and
a+h _ b

b is "5 4, where a and b are positive real numbers. As with all ratios, this one
has a very specific numerical value. To get the numerical value of this ratio, we
first must set up the equation that we get from this ratio by equating the product

of the means and extremes, namely b?> = a (a + b) = a® + ab. This equation can
be written as b®> — ab — a®> = 0 and can be solved for either a or b; say, we solve
for b. Using the formula for solving quadratic equations,! we find that

a(]+«£) \EH.

h = ‘=q

2 2
Since a length (a, b) cannot be negative, we ignored the negative root
al-v5)  J5-1
———=—a—
2 2
Therefore, by dividing both sides of this equation by a, we get
E - w‘g +1
a z
which is then the wvalue of the golden ratio, 0. Numerically, this is
. V541
approximately2 equal to: s

~1.6180339887498948482045868343656381177203091798057628621
354486227052604628189024497072072041893911374847540880753
868917521266338622235369317931800607667263544333890865959
3958290563832266131992829026788067520876689250171169620703



2221043216269548626296313614438149758701220340805887954454
749246185695364864449241044320771344947049565846788509874
3394422125448770664780915884607499887124007652170575179788
34166256249407589069704000281210427621771117778053153171410
11704666599146697987317613560067087480710131795236894275219
484353056783002287856997829778347845878228911097625003026
9615617002504643382437764861028383126833037242926752631165
33924731671112115881863851331620384005222165791286675294654
90681131715993432359734949850904094762132229810172610705961
164562990981629055520852479035240602017279974717534277759
27786256194320827505131218156285512224809394712341451702237
358057727861600868838295230459264787801788992199027077690
38953219681986151437803149974110692608867429622675756052317
2777520353613936, which we approximate to 1.61803.

1445 LY. NG

Now if we take the reciprocal of = 2 to get g IR and then
1—]_‘E

multiply this fraction by 1 in the form of 1-+/5 , we get

2 1-5 \5-1 1
1445 1-4/5 2 @, which then gives us the approximate values:

1 51

o 2
~.61803398874989484820458683436563811772030917980576286213
544862270526046281890244970720720418939113748475408807538
689175212663386222353693179318006076672635443338908659593
9582905638322661319928290267880675208766892501711696207032
2210432162695486262963136144381497587012203408058879544547
492461856953648644492410443207713449470495658467885098743
3944221254487706647809158846074998871240076521705751797883
416625624940758906970400028121042762177111777805315317141011
7046665991466979873176135600670874807101317952368942752194
843530567830022878569978297783478458782289110976250030269
6156170025046433824377648610283831268330372429267526311653
39247316711121158818638513316203840052221657912866752946549
06811317159934323597349498509040947621322298101726107059611




645629909816290555208524790352406020172799747175342777592
77862561943208275051312181562855122248093947123414517022373
580577278616008688382952304592647878017889921990270776903
89532196819861514378031499741106926088674296226757560523172
777520353613936, which we approximate to 0.61803.

We see that the value of ¢ has a unique characteristic. Aside from the usual
fact that the product of a number and its rec1procal is 1, which, here, gives us

o P
e , the difference of ¢ and its reciprocal, -;zfr is surprisingly also 1, that is,

‘?‘5_ .l 1. This is the only number for which this is true!

The not-too-well-known mathematician Michael Maestlin (1550-1631), who
happened to be one of Johannes Kepler's teachers and later his friend, is credited
with the first expansion of the value of ¢ to a five-place accuracy, as P
1.6180340, in 1597, while at the University of Tiibingen (Germany). As with
most famous numbers in mathematics, there is always a desire to seek greater
accuracy of a value. This means calculating the value to a larger number of
decimal places. Naturally, today we can use computers to facilitate this goal;
here is a short history of these milestones of the recent past.

Year Number of places Mathematician

of the value of ¢
1966 4,599 M. Berg
1976 10,000 J. Shallit
1996 10,000,000 G. J. Fee and S. Plouffe
2000 1,500,000,000 X. Gourdon and P. Sebah
2007 5,000,000,000 A. Irlande
2008 17,000,000,000 A. Irlande
2008 31,415,927,000 X. Gourdon and P. Sebah
2008 100,000,000,000 S. Kondo and S. Pagliarulo
2010 1,000,000,000,000 A. Yee

Having now established the numerical value of the golden ratio, let us inspect
some of the properties of this most unusual number. We begin by considering
the irrationality of ®. To do this, we will embark on a nifty little excursion
through some simple number theory. The realm of real numbers is composed of
rational and irrational numbers. They can be either positive or negative. When
expressed in decimal form, the rational numbers are either terminating decimals



or repeating decimals, while the irrational numbers do not repeat with any
repeating pattern and continue indefinitely. Another way of distinguishing these
numbers is that only the rational numbers can be expressed as quotients of
integers.

Here are some examples:

Rational numbers: 3;

—3=-0.5000 . =-050=05
2= 0.666 ...=0.6
Irrational numbers: /2 = 421356

We claim that the number ¢ is an irrational number—one that has an unending
decimal value—one that has no repeating pattern. We can establish that V5 is
irrational and therefore

JS_.+1_
5 =¢

would also be irrational. To prove that /5 is irrational, we begin by supposing
)

the contrary, namely that v/5 is rational, implying that V5 ix, a fraction that
may be assumed to be in lowest terms. Squaring both sides and clearing
denominators, we get 5g°> = p®. Thus the left-hand side is divisible by 5 and
therefore so is the right-hand side. But 5 is a prime. Therefore, since 5 divides
p?, it must also divide p. Thus, p = 5r, for some r. Then we have 5¢> = p? = 252,
so that g> = 5r°. Repeating the previous argument, we find that q is also divisible
by 5, contradicting our assumption that the fraction was in lowest terms.
Therefore, v/ is not rational. Thus, ¢ must then be an irrational number.

As we will see in chapter 4, the irrationality of ¢ will be realized by the fact
that the diagonal of a regular pentagon is incommensurate with a side of the
pentagon, which means they have no common measure. Similarly, the
irrationality of m is seen by the fact that the diameter of a circle and its
circumference have no common measure.

We continue by considering the powers of ¢, To do so, we first must find the

value of #2 in terms of ¢.




Since

@ =

V5+1)_5+25+1_
=

2 4

2€+6=\/§+3=J§;l+1=¢+1‘

"

e

You may find this equation 2 = @ + 1 somewhat familiar, as we have
encountered it at several points already. From this equation, we can generate an

interesting mathematical expression to express the value of ¢ in a very unusual
fashion. By taking the square root of both sides, this equation can be rewritten as

¢p=vo+1,0r p=1+0 we will now replace ¢ under the radical sign with its

equivalent ¢p=v1+0 1o get “’:Jr H'l""‘j] =y 1+4/1+9.

Then, repeating this process (i.e., replacing the last ¢ with ¢=v1+¢ ), we get

¢*=J1+-/1+M-

Continuing this process gives us

o=y fiiee

and so on, until you realize that this will go on to infinity and look something
like

d={[1+A[1+A|1+A[1+4)1+ 1+J1+J|+J|+J|+J]+J]+J1+JT\/T.,..

Suppose we now consider the following analogous nest of radicals:



AT

We can evaluate this value for x by using the following technique: There is an
infinite number of radicals in this nest. Without loss of accuracy, we can
temporarily “ignore” the outermost radical and see that the remaining expression
is actually the same as the original one:

oAy

So if we substitute this value of x into the original expression, we get x=~1—x.

By squaring both sides, we get the following quadratic equation: x> = 1 — x, or x?
+ x — 1 = 0. When we apply the quadratic formula to this equation, we get
5-1
. ) ) %= =(0.61803,
(ignoring the negative root) 2
|

1 1
which is #. Again, we have a most unusual relationship between ¢ and ¥:

o=\[1+A[1+4{1+4j1+4/1+ l+JH\IH\IHJHJHJ1+J1+1’l+1HI+JI+T.
and

e

Let us now investigate powers of ¢. In order to inspect the successive powers of
¢, we will break them down into their component parts. It may at first appear
more complicated than it really is. You should try to follow each step (it's really
not difficult—and yet very rewarding!) and then extend it to further powers of .



+

sl

=p(p+1)=¢ +¢p= (qb+ V+p=2¢+1

-(qb+ Wp+1)=¢ +2¢+1=(¢+1)+2¢+1=3¢+2
2o+1)(¢p+1)=2¢"+30+1=2(¢p+1)+3¢+1=5¢+3
2¢+1)(2¢+1)=4¢  +4¢+1=4(p+1)+4¢p+1=8¢+5
Bg+2)(2¢+1)=6¢"+Td+2=6(¢p+1)+Td+2=13¢+8
(3p+2)(3+2)=9¢"+12¢+4=9(d+ 1) +12¢+4=21¢+13
=(5¢+3)(39+2)=15¢"+19¢+6=15(¢+1)+19¢+6=34¢+21
”:qb qb =(5¢+3)(5¢0+3)=25¢"+300+9=25(¢ + 1) +30¢+9=55¢+34
and so on....
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By this point, you should be able to see a pattern emerging. As we take further
powers of @, the end result of each power of ¢ is actually equal to a multiple of ¢

plus a constant. Further inspection shows that the coefficients of ¢ and the

constants follow the pattern 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,.... This

sequence of numbers is famous and is known as the Fibonacci sequence.?

Beginning with two 1s, each successive number is the sum of the two preceding
numbers. The Fibonacci numbers are perhaps the most ubiquitous numbers in all
of mathematics; they come up in just about every field of the subject. Yet, as we
mentioned earlier, they only made their “debut” in the Western world in chapter
12 of a 1202 publication, Liber Abaci, by Leonardo of Pisa, most commonly
known today as Fibonacci (ca. 1175—-after 1240), in the solution of a simple
problem about the breeding of rabbits.

We recently discovered that the Fibonacci numbers were described in early

Indian mathematics writings.2 The earliest appearance can be found under the
name matrameru (Mountain of Cadence), which appeared in Chandahstitras (Art
of Prosody) by the Sanskrit grammarian Pingala (between the fifth and second
century BCE). In a more complete fashion were the writings of Virahanka (sixth
century CE) and Acarya Hemacandra (1089-1172), who cites the Fibonacci
numbers. It is speculated that Fibonacci may have come to these numbers from
his Arabic sources, which exposed him to these Indian writings.

Sometime before his death in 1564, the German calculation master Simon
Jacob® made the first published connection between the golden ratio and the

Fibonacci series, but it appears to have been something of a side note.Z Jacob
had published a numerical solution for the golden ratio. In the margin of the
page discussing the Euclidean algorithm from the second proposition of book 7



of Euclid's Elements, he wrote the first twenty-eight terms of the Fibonacci
sequence and stated: In following this sequence one comes nearer and nearer to
that proportion described in the 11th proposition of the 2nd book and the 30th of
the 6th book of Euclid, and though one comes nearer and nearer to this
proportion it is impossible to reach or to overcome it.

We will use the symbol F to represent the seventh Fibonacci number, and F,, to

represent the nth Fibonacci number, or as we say, the general Fibonacci number,
that is, any Fibonacci number. Therefore, in general terms, we would write the
rule of the Fibonacci numbers as F,,, = F,+F,,; withn>1,and F; = F, = 1.

Let us look at the first thirty Fibonacci numbers.

F =1 F, =89 F, =10,946
F,=1 F, = 144 F,, = 17,711
F,=2 F, =233 F,, = 28,657
F,=3 F, =377 F,. = 46,368
F.=5 F. =610 F,, = 75,025
F, =8 F, =987 F,, = 121,393
F,=13 F,=1597 F,, = 196,418
F, =21 F, = 2,584 F = 317,811
F, =34 F, = 4,181 F,, = 514,229
F,=55 F,, = 6,765 F,, = 832,040

The list of powers of ¢ can easily be extended by using the Fibonacci numbers
directly in the pattern we developed above.



16+ 0
1+ 1
26+ 1
2
3

[E=]

Lad

3+

S+

B+ 5
3¢+ 8
21¢+ 13
349+ 21
55¢+ 34
89¢+ 55
¢ =144¢+ 89
$°=233¢+ 144
¢"=377¢+233
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Since the Fibonacci numbers appear as the coefficients of #, as well as the
constants, we can write all powers of ® in a linear form: " = a®+b, where a and
b are consecutive Fibonacci numbers. In the general case, we can write this as: ¢
n= Fn¢+Fn_1, with n > 1 and F = 0. (See the appendix for a proof of this

statement.) You should also take note that each power of ¢ is the sum of the two

immediately preceding powers of ¢. We can develop another amazing pattern
involving the Fibonacci numbers and the golden ratio. This will involve a
structure that is called a continued fraction. We will begin with a brief

introduction to continued fractions.® A continued fraction is a fraction in which
the denominator contains a mixed number (a whole number and a proper

13 . :
fraction). We can take an improper fraction such as 7 and express it as a mixed
6 i
number: 17 =1*3. without changing the value, we could then write this as

6 1
] s ]
7 7

6
which in turn could be written (again without any value change) as



This is a continued fraction. We could have continued this process, but when we

1
reach a unit fraction? (as in this case, the unit fraction is %), we are essentially

finished.
To enable you to get a better grasp of this technique, we will create another

12
continued fraction. We will convert 7 to a continued fraction form. Notice that,
at each stage, when a proper fraction is reached, we take the reciprocal of the

2l
3 2
reciprocal (e.g., change 2
as we will do in the example that follows), which does not change its value:
12 5 | I 1 |
7 4 7 2
5

14— b

hn
b | n| —

If we break up a continued fraction into its component parts (called
convergents),!® we get closer and closer to the actual value of the original
fraction.

First convergent of % 1.
Second convergent of %: 1+ ]1 =
Third convergent of 12 oo i e 1E = E
7 1 3 3
+
Fourth convergent of %: 1+;l = %
1+ 1
24
2

The above examples are all finite continued fractions, which are equivalent to
rational numbers (those that can be expressed as simple fractions). It would then
follow that an irrational number would result in an infinite continued fraction.
And that is exactly the case. A simple example of an infinite continued fraction

is that of /2.



A -

We have a short way to write a long (in this case infinitely long) continued
fraction: [1; 2,2,2,2,2,2,2,...], or when there are these endless repetitions, we can
write it in an even shorter form as [ 1321 where the bar over the 2 indicates that
the 2 repeats endlessly.

In general, we can represent a continued fraction as

iy +

I

U”_'l T—

Uy

where q; are real numbers and a; # 0 for i > 0. We can write this in short fashion
as [ag; aq, ay, as,..., a,_q, a,l.

Now that the concept of a continued fraction has been described, we can apply it
to the golden ratio. We begin with the equation of the golden ratio: ¢ =1+ If

1
we substitute 1+¢ for the ¢ in the denominator of the fraction of this equation,

¢=1+LI=|1;1.¢;].
]+ -
we get ¢

1
and then continue this process by substituting the value ¢ = 1+% in each case for
the last denominator of the previous equation, we will get the following:



1
[ I
¢
Repeating this procedure, we get an infinite continued fraction that looks like
this:

1
I
1
1
]
I
1
1

1+...

=1+
1+

1+

1+

1+

1+

1+
1+

or =L 1L 1L 1L...]=[] (See the appendix.)
This gives our now already famous ¢ another unique characteristic, namely
that it is equal to the most primitive infinite continued fraction—one with all 1s.
Let us take the value of this continued fraction in successive parts (which are
called convergents), each of which will successively bring
us closer to the value of the infinite continued fraction. The successive
convergents are as follows:

F 1
1
I+ =2
1
Fl
]JrL:Hl:E
1 2 2



F, _3_

[I; LI]=1.5

3
1 5
+ 1 =1+%=l+?=§
l+—1 1+ 2
1+— ? ’
1
:iziz[];l,],l]zl._ﬁ
A
]I :1+ 1 :1+ ]1
» g5 1+ —
1 1 3
l+—l HE 2
1+ — 2
]
=1+ = 1+—=—==
D 5
1+— Y
3
7 ¥
= Dol e l:]:l=1"1 =16
A
it 11 =1+ ll —at
1+ '
; ]
. 1+
1 1
1+—
2
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=1+ : e : =le : =t :

]
1+E

1 | 1
I+—l+L 1+]+—l 1+E 3
1+l L :
5 5
3

—1+L= &zj—z = [1;1,1,1,1,1,1,1,1]=1.61764705882352941

As they progress, you will notice how these convergents seem to “sandwich in,”
or converge, to the value of ¢, with which we are now quite familiar,
approximately 1.618034. What also emerges from these continually increasing
convergents is that the final simple fractional values of these convergents happen
to be composed of the Fibonacci numbers.

Aside from the continued fraction

g=1+

1+...

getting ever closer to the value of ¢ as we increase its length, we shall now see

another surprising relationship of ¢ and the Fibonacci numbers.

In the following chart, we can see that the ratios of consecutive members of
the Fibonacci sequence also approach the value of ¢. In mathematical terms, we
say that the limit of the quotient/ratio of two consecutive Fibonacci numbers,
F

n+l

j{"

n

is the value of ¢. Mathematicians typically write this as



1
v

limf“—*l=¢.

H=woa
]

The famous Scottish mathematician Robert Simson (1687—-1768), who wrote an
English-language book based on Euclid's Elements, which is largely responsible
for the development of the foundation of the high school geometry course taught

5
n+l

in the United States, was the first to popularize the notion that the ratio 5

of two consecutive Fibonacci numbers will approach the value ¢ of the golden
ratio. Yet it was Johannes Kepler (1571-1630) whom we credit with discovering

that the reciprocal quotient £

of two consecutive Fibonacci numbers approaches the reciprocal of the golden
I

ratio ¢.
We can see this in the left column of the following table, where F, represents

the nth Fibonacci number and F,, ; the next, or (n+1)st, Fibonacci number.

The Ratios of Consecutive Fibonacci Numbers



F:|+] 'F:l

F;| F:|+]
%=1.000000000 1 =1.000000000
%z 2.000000000 % =0.500000000
3=1.500000000 % 0.666666667
%2166666666? % 0.600000000
%:1.600000000 g 0.625000000
I_;=16’*3000000 % 0.615384615
%21613’%8461 g_ﬁ; 0.619047619
1_1:161904?619 ?-" ~(0.617647059
51161?64?0:9 %20.618181818
ﬁ___*;-1.618181818 g_g-0.61?9??528
1;3 ~ 1.617977528 %:: 0.618055556
%:: 1.618055556 %:: 0.618025751
;%-»1618025?51 %-»061803?13'
%::161803?13' %~0618032?8T
987 - 610
A1~ 1.618032787 §8~0.618034448

By taking the reciprocals of each of the fractions on the left side, we get the
column on the right side—also, as expected, approaching the value of

H . . . . .
5=0.618034 12 opce again we notice this most unusual relationship between ¢

1 -1 L : : .
and ¢, namely that #=%5*1_this time via the Fibonacci numbers.

THE BINET FORMULA

Until now, we accessed the Fibonacci numbers as members of their sequence. If
we wish to find a specific Fibonacci number without listing all of its
predecessors, we have a general formula to do just that. In other words, if you
would like to find the thirtieth Fibonacci number without writing the sequence of
Fibonacci numbers up to the twenty-ninth member (F,q) (which is a procedure



that is somewhat cumber-some), you would use the Binet formula. In 1843 the

French mathematician Jacques-Philippe Marie Binetl2 (1786-1856) developed
this formula, which allows us to find any Fibonacci number without actually
listing the sequence as we would otherwise have to do.

The Binet formulal? is as follows:

or without using the ¢, we have

=55 (5|

which will give us the Fibonacci number (F,) for any natural number n (a proof
of this formula can be found in the appendix).

As is often the case in mathematics when a formula is named after a
mathematician, controversies arise as to who was actually the first to discover it.
Even today, when a mathematician comes up with what appears to be a new
idea, others are usually hesitant to attribute the work to that person. They often
say something like: “It looks original, but how do we know it wasn't done by
someone else earlier?” Such is the case with the Binet formula. When he
publicized his work, there were no challenges to Binet, but in the course of time,
some claims have surfaced that Abraham de Moivre (1667-1754) was aware of
it in 1718, Nicolaus Bernoulli (1687-1759) knew it in 1728, and his cousin

Daniel Bernoulli (1700-1782)12 also seems to have known the formula before
Binet. Also, the prolific mathematician Leonhard Euler (1707-1783) is said to
have known it in 1765. Nevertheless, it is still known today as the Binet formula.

Let's stop and marvel at this wonderful formula. For any natural number n, the
irrational numbers in the form of V5 seem to disappear in the calculation, and a
Fibonacci number appears. In other words, the Binet formula delivers the
possibility of obtaining any Fibonacci number, and can also be expressed in
terms of the golden ratio, 0,

So, now we shall use this formula. Let's try using it to find a Fibonacci
number, say, the 128th Fibonacci number. We would ordinarily have a hard time
getting to this Fibonacci number—that is, by writing out the Fibonacci sequence
with 128 terms until we arrive at it.



Applying the Binet formula, and using a calculator of course, for n = 128 we
get:

17%

el ) () {55

!

wh

As we claimed earlier, we can also express the Fibonacci numbers (in Binet
form) exclusively in terms of the golden ratio, ¢, as

H

&

F,= , where n=1.
P

Familiarity with the Fibonacci numbers reminds us of their recursive definition:
Foi» — F,41 —F, =0, which comes from the original definition of the Fibonacci

numbers: F,,, = F, + F,,;, where n > 1 and F; = F, = 1. Recall the Fibonacci
number sequence:

mll 2 3 85

T &8 9 1011 2 B B L I
13 21 34 55 89 144 233 377 610 987

Rather than beginning with 1 and 1, suppose we were to begin with 1 and 2.
Then we would still generate a similar sequence, except we would be missing
the first 1. Edouard Lucasi® (1842-1891), the French mathematician who is
largely responsible for bringing the Fibonacci numbers to light in recent years,
suggested an analogous sequence; however, this time beginning with 1 and 3.
That is, for the (now-called) Lucas numbers: L,.» =L, + L,,;, when n > 1, and

L, =1 and L, = 3. The sequence looks like this:

n|]23456?89]0 11 12 43 14 15 16
L1 347 11 18 29 47 T6 123 199 322 521 843 1364 2207

Once again, our golden ratio comes into play in that we can also express the
Lucas numbers in terms of the golden ratio:



n

L,=¢"+ (— é) , where n> 1.

n+l

Let's admire the continued fraction development of L, | and notice how it
F

n+l ”

differs from that of

Only the last denominator is different. It is a 3 instead of a 1—this is also the
difference in the beginning of the Lucas sequence of numbers: The second
number is a 3 instead of a 1, as with the Fibonacci numbers.

For example, consider the following two examples:

|2

:E:l—|— E_l'ld—?:—.:l"'
8 g L

In general and in the shortened format we have the following:

£=3=[31=3

P=4=[1;3]=13

£=1=01;13]=175

LoNo(151,13]= 1571428

Ly 18 473

L=18-11;1,1,13]1=1.53

F=2=[1;11113]= 161

2= 4115 1,1,1,1,1,3] = 1.620689655 172413793 1034482758
I

Ly =47~

=J6=[1;1,1,1,1,1,1,3]
1.6170212765957446808510638297872340425531914893

%‘:ﬁz[l; 1,1,1,1,1,1,1,3] = 1.618421052631578947361, etc.




One might then ask if this can be extended to any starting pair of numbers. That
is, were we to begin a Fibonacci-like sequence with other starting numbers,

would we also be able to express the numbers in terms of 7

Suppose we choose the starting numbers of such a sequence to be f; = 7 and f,
= 13 with the same recursive relationship as before, where f..» = f, + f,,:+1 (with n
> 1). We would then have the following sequence, which does not have a
particular name, as the Fibonacci or Lucas sequences do:
n|123456?891ﬂ 11 12 13 14 15
f.17 13 20 33 53 86 139 225 364 589 953 1542 2495 4,037 6,532

Yet the big surprise is that the ratio of consecutive members of the sequence will
tend toward the golden ratio as the numbers increase—as was the case with the

Fibonacci and the Lucas numbers before. In the chart below, notice how the ratio
fas)
of /. approaches #=1.6180339887498948482...as a limit. It is believed that the

Fibonacci numbers provide the best approximation of ¢, though this is not easily
seen from the chart.1Z




sl L, j_

n FJ.- L” f

1 1 3 1.857142857
2 2 1.333333333 1.538461538
3 1.5 .75 1.65

- 1.666666666 1.571428571 1.606060606
b 1.6 1.636363636 1.622641509
6 1.625 1611111111 1.616279069
7 1.615384615 1.620689655 1.618705035
8 1.619047619 1.617021276 1617777777
9 1.617647038 1.618421052 1.618131868
10 1.618181818 1.617886178 1.617996604
11 L.6ITITio2% 1.618090452 1.618048268
12 1.618055555 1.618012422 1.618028534
13 1.618025751 1.618042226 1.618036072
14 1.618037135 1.618030842 1.618033192
15 1.618032786 1.618035190 1.618034292
16 1.618034447 1.618033529 1.618033872
17 1.618033813 1.618034164 1.618034033
18 1.618034055 1.618033921 1.618033971
19 1.618033963 1.618034014 1.618033995
20 | 1.618033998 | 1.618033978 | 1.618033986
100 | 1.618033988 | 1.618033988 | 1.618033988

We can see this better when we take the fifty-place approximation of the value
of

¢ = 1.6180339887498948482045868343656381177203091798057.....
Now compare this value to the approximations below for n = 100:

F
T] =1.6180339887498948482045868343656381177203127439637...
L

” =1.6180339887498948482045868343656381177203056156477...

{} =1.6180339887498948482045868343656381177203082783971..

Curiously enough, if we take the ratio of the Lucas numbers to the Fibonacci



L,

numbers, F., it seems to approach

below.

V5=2.236067977...,

L
n Fy
| |
) 3
3 2
4 2333333333
3 £
6 2.0
7 2.230769230
8 2.238095238
9 2.235294117
10 2.236363636
11 2.235955056
12 2.236111111
13 2.236051502
14 2.236074270
15 2.236065573
16 2.236068895
| 2.236067626
18 2.236068111
19 2.236067926
20 2.236067997
100 2.236067977

as shown in the chart

You may be impressed further by observing that if we take the ratio of
alternating Fibonacci numbers, the limit as the numbers increase will approach

the value ¢+1. Another way of saying this is that by taking increasing Fibonacci

F..
numbers for F

, we gradually approach the value of #+1 as shown in the chart



Approximalion Approximation
. : | |
Fruva nl'—ﬁ”:“'j' IIF""'E of lIL
" F, b \ F, \ F,
F, 2 (F (2
| = 2 5 [£32 = | 1.414213562
F o1 VE V1
F, 3 ' "
2 |Z=2=2 |3 e 4 1.732050807
F, 1 VF, V1
F. 5 (& I3
. P | aue L - 1.581138830
E 2 VFE V2
F_8 [ _ | S5
« I'g. "3 2.666666666 | [~5=_ |2 1.632993161
PR VF, V3
FE, 13 F-E
5 == |26 1% o 13 | 161245154
F, 5 VE Ys
F. 21 [ [21
6 +=— | 2.625 Ilﬂ = o0 1.620185174
L} 3 ‘IE\I jr.:‘l 1||II S
F, 34 (F,  [34
7 | 2= | 2.615384615 [£a _ 3% | 1617215080
F, 13 VE V13
F, 55 F, .'
8 |Z=-=57 | 2.619047619 B = 35 [ 1618347187
F 21 VF, V21
F, 89 'F, (89
0 L =— | 2.617647058 I'i =132 | 1617914416
F, 34 \VFE V34
F, 144 .' .'
10 2= ——| 2.618181818 _ .'5'3-= .'E 1.618079669
Flo 33 ‘|||| F;“ 1'\' 55
F[ﬂ‘ If:
100 | 7 2.618033988 (e 1.618033988
below: s V Fioo

Yet, if we consider the series

Er*i
F

L

it approaches the golden ratio, #, as compared to the value reached by the series
F,

T, which tends toward 9+1. If you consider that we already established that ¢
+1 = 2, the relationship above should not be completely unexpected.18

One more little tidbit relating the Fibonacci numbers to the golden ratio can be
seen by taking the series of reciprocals of Fibonacci numbers in the position of



powers of 2.

IJ
1
.

381966011

=
+
7
!
)
T
+
+

|
+
1l
[
L

L 1 l ‘ : L 4. =d—¢= 01051517,

or written another way,

=1
EE_4¢

k=0

At the point at which k = 6, we get a rather good approximationi:

VT EN DA -

I 3721 987 2,178,309 10,610,209,857,723

~2.38196601125010515179541316166,
which you can appreciate when comparing it to the value 4 - O w
2.38196601125010515179541316563.
There are many numerical expressions that characterize the golden ratio, but
none as simply as the umque relationship between the golden ratio and its

L=
reciprocal: 5 =1 and =3 =1 For no other number is this true!
If we look at ¢ with the above relationships in mind, there are a number of
variations that can result. For example, which positive number is 1 greater than

its reciprocal? Yes, by now you probably guessed it: 3

x=1+1 . .
+= %77, which can then be written

x:l+J§:
as x> =1+ x, or x> —x — 1 = 0. This has its positive root: 2
Yes, the golden ratio!
One might also say that ¢ is the only number that is 1 less than its square. That
is, x = x2 — 1, which leads us back to the previous equation, x2—x—1=0, which
when substituting for x gives us ® = ¢2 — 1. This is a relationship that we saw

earlier as #2 = @ + 1, when we then used it to generate the powers of ¢,
As we further investigate the representation of the golden ratio, we can ask:
What is the solution to each of the following equations?

The question yields the following equation:

2



= —=0
If we divide each of these equations by x", where n is the power of the third term
of the equation, we get the following equation: x> — x — 1 = 0, a solution with

which we are by now quite familiar; namely ¢, and ~ % hence the golden ratio!

Furthermore, when we consider the equation in the form of ax? + bx + ¢ = 0,
where a, b, and c take on values 1 and —1, we get the golden ratio, ¢, in a number
of ways, as long as the roots are not complex numbers.22

The chart below shows the various solutions to these equations.



7] b c The Roots The Roots Elaborated
| | | __L+£1£_ Complex roots
2 2
! 1 | -1 | 1.5 _¢:_\E+1.L=\E—1
3 2 2 g 2
I o] I l_{_ﬁ_f_ Complex roots
- S
| —1 | =1 1.5 . V541 1 51
273 2 7 @ 2
-1 | 1 || 1 oS G S 1 A5
22 ' 2 0 @ 2
=] I ] l+£_f Complex roots
7 S
-1 | -1 |1 | 1_45 _ e NE AL T w51
2 2 ¢ 2
o | | = _l+£-;‘ Complex roots
2 2

As we search for ways to express the value of $, we cannot neglect the value of
n. We can take an approximation to make this comparison. We can show that the
circumference of a circle with radius of length VO is approximately equal to the
perimeter of a square with side length 2. That is, the circumference of this circle
is 2m/9 ~7.992~8, and the perimeter of the square is 4 - 2 = 8.

This can give us an approximate value for t in terms of ?; since we have e

=4 ~16 ~1.62
~4, this then can be written as \'@"x‘ or =5 1‘6"1, a very close
approximation of 0~ 1.618.
Irrational numbers can only be approximated by fractions in the decimal



system. For example, Archimedes (287-212 BCE) found an approximation for

23 22
the irrational number n = 3.141592653...., namely 71 <7 <7

Inspecting these two limiting fractions, we find that 71 1 has a period of length
35 (i.e., after which the decimal begins to repeat itself) as shown here

3.140845070422535211267605633802816901408450. ... And the fraction 7 has
a period of length 6, as: 3.142857142857 142.... Yet we notice that both

fractions establish the value of m to two-decimal-place accuracy. On the other
155

hand, the fractlon 113approximates the value of m to an accuracy of six decimal

places as: 11: = 3.141592920..

For the golden ratio, ¢ = 1.618033988.... , we have, for example, the
following approximation (using Fibonacci numbers) correct to five decimal
OI7

places: 610 = 1.618032786....

That should not come as a surprise since we already saw that the quotient of
consecutive Fibonacci numbers yields ever closer approximations of the golden
ratio, o,

The best approximations of ¢, when both numerator and denominator have the

same number of digits, is achieved with the Fibonacci numbers, as seen, for

8 _
example, with single-digit fractions as 5~ 1.6

Hq =1.618181818..

and with double-digit fractions as

|

From our study of continued fractions, we saw that ¢ and # can be represented
by the simplest of all continued fractions, since they consisted of all 1s. The sad
news here is that despite their “simplicity,” they require one of the largest
numbers of fractions to reach their convergence at infinity. We might then say
that the golden ratio and its reciprocal are the most irrational numbers, because
they require the most fractions to reach their best approximation. We will see
later, however, that despite this rather sad assessment, the golden ratio will show
its beauty in art and nature well above all other numbers.

There are many other numerical representations of ®. Some of these involve
trigonometric functions. We'll show a few of these here. You may wish to verify
their (correct) values.



¢=2 sin 3—5":2 sin 54°, $=2 cos %—:2 cos 36°,

3—tan’ 5
—lanty 3 gan? 360

o= 1*1,‘:1“3? ~ 1+tan?36°° ";T,:E COS 2%:2 cos 72°
] ¢= I = I §
5:2 SIn %:2 sin 18°, 2[:;]52?}.{ 2c0s72°

See the appendix for more trigonometric relationships that result in the golden
ratio.

While on the topic of the trigonometric functions, it might be interesting and
noteworthy to see that through trigonometry we can connect the value of m to the
golden ratio as in the following, where we can express the value of 1 in terms of

9,

7 = 2(arctan % +arctan ¢°), or

= 0 arctan 1.5 arctan i3

¢ P
The justification for these representations can be found in the appendix.
As you can see, the golden ratio, ?, can be represented in a number of ways. In

chapter 5, we will provide some surprising appearances of this apparently
ubiquitous number.



Chapter 5

Unexpected Appearances
of the Golden Ratio

Up to now, we have investigated the golden section geometrically, algebraically,
and numerically. We shall now embark on an unusual adventure—exploring the
many curious ways in which the golden section appears where you might least
expect it. Just as the value of m, which emanates from its relationship to the
circle, can be found in a host of other contexts, so too can the golden section, 4’,
be found—in as many interesting and unanticipated places. This potpourri of
sightings of the golden section will vary greatly, which we hope will add to the
never-ending fascination that this ubiquitous number has provided us over the
millennia. We see these as mathematical curiosities and have named them
accordingly.

CURIOSITY 1

In an equilateral triangle, AABC, each side of length s is partitioned (with the
same orientation) into the segments a and b, which are in the golden ratio (fig. 5-
1). The result is that an inscribed equilateral triangle, ADEF, is created with side
length c. Although this figure has the golden section built into the construction,
it is amazing how the golden ratio emerges in a multitude of aspects of this
figure.



Figure 5-1

s
L g—==
Here are some of the appearances of ¢ in figure 5-1: s ¢

V3@ —p+D)
4¢° '

3. The ratio of the areas of the two equilateral triangles is

o A]‘EE.&QEF =

o

Area.-uﬂc' & ¢ B _
Areaanm-' 1 +i1_l
¢L

4. The area of each of the three congruent triangles, AADF, ABDE, and ACEF, is

» V3

Al’ﬁﬂ&q[;F =& 3
49

5. The ratio of the areas of the original equilateral triangle to one of the three
congruent triangles is

Aren, ..

2
=—+3
Area,,.. ¢



6. The ratio of the area of the smaller equilateral triangle to one of the three
congruent triangles is
ATl - 2
Areai‘l.d!’.}f-' @

(The justifications for these are not complicated, but are relegated to the
appendix so as not to break the flow of the presentation of curiosities.)
CURIOSITY 2

We begin with a triangle, AABC (fig. 5-2), with sides BC = 1, AC = x, and AB =
x?. If x < 1, then BC is its largest side and AB is its shortest side. Using the

!
triangle inequality,! we get x> + x > 1. By adding  to each side of the inequality:
2
x +x+l} i, or .rc+l 3}2.
4 4 2] 4

As we must be working with positive numbers, we get

x + l}ﬁ}grx} 'Jg_l =l
2 ¢
I
That is, the side of length x must be such that 7<*<1 Here the golden ratio

takes the role of a limiting length.

f"

Figure 5-2

We now consider a circle ¢ through point B and tangent to AC at point A,
intersecting BC at D. (See fig. 5-3.)




Figure 5-3

Because LABC=14D=/DAC, and LACB=LACD, we have

AABC ~AACD.
From this similarity, it then follows that

AD. A o AT o

AB ~ BC’ x¥ 1 which leads to AD = x3, and
C . AC o CD X
A Be” x 1 which leads to CD = x2.

From this we have the possibility of constructing a set of triangles, the sides
having lengths x, x™*1, x™*2 where n = 0, 1, 2, 3,.... A rather nice pattern!

CURIOSITY 3

Here we will create a situation where the golden section will continuously
reappear. In figure 5-4, the point S divides the segment AB into the golden
section. From this, we can generate many more golden sections, as you will see
in the following steps.



El

Figure 5-4

. The circle with center atA with radius AS cuts the line AB at a second point C.
We then have “1¢= ¢ and J5=¢.

). The circle with B as its center and radius AB intersects the line AB at a second
BC CD
point D. We then have 0 = ¢ and 3=
What might you guess are the following ratios? and Yes, they are the golden
ratio, ¢!
We can justify these appearances of the golden ratio as follows:

Bec: = ¢ and AC AS, it follows that 42 AC AS = ¢, and
o 5::‘ Rodh_ac, =
as well T ,.m+] 1i1=¢. .,
Analogously, we can show the rest of the ratios as equal to 8~ "~ 9 You

might want to continue this process to see the pattern that will evolve.

CURIOSITY 4

Referring to figure 5-5,% we begin with line segment AB, and at B we construct a
perpendicular segment, BC, half the length of AB. So, if we let AB = 1, then

BC=3- We then construct a circle c; with its center at A and radius AC = r; to

intersect the line AB at point D. At D, another perpendicular is erected the same
|

length as BC. Therefore, DE=3. Finally, we construct a circle ¢, with its center

at D and with radius DE = r,, cutting AB at points P and Q. Completely



unexpectedly, it turns out that points P and Q enable us to partition the segments
AB and AQ into the golden section.

Figure 5-5

To see why this works—that is, to justify this oddity—we begin by applying the
Pythagorean theorem to triangle ABC, to find

r=AC=Y3 AD=Y3

2 " which tells us the other radius of the circle, 2

on the one hand,

and, on the other hand,

AQ _AD+DQ _N5+1 _

AB AB ) ¢




as well as

AB _ AB  _ AB o
BO BD+DQ (AD—AB)+DQ 45 .

_I —
_.__l_¢.,

2 2 ¢

Unexpected appearances of the golden section such as these make it so
intriguing. Sometimes when you do not actually expect the golden ratio to
appear, it just does.

CURIOSITY 5

From our previous exploration of the golden section in polygons, we find it
particularly ubiquitous in the pentagon, and consequently in the pentagram. It is
now only fitting that we investigate the golden section's appearance in the
regular hexagram: a six-pointed star in which each of the “points” is formed by
an equilateral triangle and in which the center is a regular hexagon. We begin
our search for the golden ratio in figure 5-6, with a regular hexagram. We will
construct a circle with center D and radius DC to intersect the extension of line
segment AB at point S. Curiously enough—among other sightings of the golden
section—we find that point B partitions line segment AS in the golden ratio. Let
us see why this actually is true.

C
NS

rd o .

/ \

f ".III ‘\\
| | M : xx\"\
AN /B__— \8

\ﬁ.___ﬁ \Lﬁ
. D_-
Figure 5-6
AP=PB=%

In figure 5-7, we will let AB = a and, by symmetry, 2" We also have

AG=GH= Bh’z%. and GP=PH= %



Figure 5-7

[
Applying the Pythagorean theorem to triangle ABCP, we get CP =D0= 73

When we apply the Pythagorean theorem to ADHP, we get DP=CQ= %‘ﬁ -

We have CD=CP +DP =43 +£3 =243,

The circle we constructed with center D and radius CD (which is also the
diameter of the circumscribed circle of the hexagram) intersects the extension of
line segment AB at point S. With this point, S, we determine ADPS, to which we
shall again apply  the Pythagorean  theorem, to obtain

2a fiﬁ]_ _ 51:_?‘

PS*=DS*-DP*=CD*-DP*=(2% 3| _ (4
| 3 6 4
which then has S =3V5. Now that we have arrived at an expression involving
V5, we begin to anticipate that the golden ratio is soon to appear.
To establish the golden ratio, we begin with

a \E —1

BS=PS—BP="5_%- a(¥5-1)
2 2 2

We are now ready to inspect the crucial ratios.






and

i ﬂ\/g

AS _AP+PS 3" 5 45+l
AB 4B a 2

=¢.

Thus, we have again found the golden ratio, this time embedded in the hexagram
—mnot a very well-known place to find it!

CURIOSITY 6

The floral designs in figures 5-8 and 5-9 look rather attractive and can be seen in
many contexts—toys, puzzles, and so on. Beyond its optical beauty, there is also
the subtle beauty owing to its reliance on the golden section.

Figure 5-8



Figure 5-9

In figure 5-10, we can see the basis for its construction—a combination of
circles, each of which is centered on one of the six equidistant points on a given

circle.

Figure 5-10

In figure 5-11, we have AM = BM = CM = DM = EM = FM = r, as well as AB =

BC = CD = DE = EF = AF = r (since ABCDEF is a regular hexagon). We then
MS _ DM _
have the golden ratio in that D5 =15 =9 Let's see why this is true.



Figure 5-11

Building from our investigation of Curiosity 5, we have found that in figure 5-
11, triangle AFM is equilateral and AM is the perpendicular bisector of BF. We
then get A0=CM =3,and GF=3+3, yhere r is the radius of one of the
congruent circles. Also BF = BG + GF =2GF =r+/3.

Circle ¢, has its center at A and radius /1= rv/3. and circle c, has its center at
D and radius 2= =3,

Circles c¢; and c, intersect at point H (and another point not shown) with
AH=DH(=BF)=r+/3 and HM=r+/2. -

Circle ¢, has its center at B and radius 7= 1M = V2. Circle ¢, has its center at
F and intersects AD at S.

MS _ DM

We are now ready to show that Ds = wms = 0 the golden ratio. We first apply
the Pythagorean theorem to triangle BGS to get
GS*=BS*-BG*=(rv2)*-(53)=3 >

L AN T ax _F r_F !

Therefore, G5=35V5. Then MS=GS-GM =55-5=5-(V5-1).

With these values (in terms of r) we can find the desired ratios:



Fi
MS_ MS 5(¥5-1) J5-1_5+1_

DS DM—-MS (5_1):3—\/5_ 2

.Ir._

¢

o
2
and

DM _ v 2 541

MS %(Jg_]) J5-1 2

@ .

This justifies our earlier statement about the beautiful design (figs. 5-8 and 5-9)
having the golden ratio embedded within it.

CURIOSITY 7

An analogous situation to that of Curiosity 6 can be made for a similar design,
but based on a regular pentagon rather than the hexagon used earlier. Here, too,
the golden section will appear embedded in the design. As we inspect the design
in figure 5-12, we find that we have five congruent circles centered at the five
vertices of a regular pentagon, each containing the center of the pentagon. Thus,
the design is similar to the previous one.

Figure 5-12

For the sake of convenience, we will let the radii of these circles have length r =
1. In figure 5-13, we have a detailed enlargement of the diagram in figure 5-12,
and we will call the centers of two of the intersecting circles M; and M,. They



intersect at points A and M. We will now seek to find the length of AM.

Figure 5-13

In chapter 4, we investigated the regular pentagon with respect to its
involvement with the golden ratio. In figure 5-13, we present a close-up of a
portion of figure 5-12 so that we can properly focus in on quadrilateral MM,

AM,, which is a rhombus since MM, = AM; = AM, = MM, = r = 1. This now
tells us that the radius of the circumscribed circle of the pentagon r, = MM, =
MM, = 1. The inscribed circle of the regular pentagon, which is tangent to the
pentagon's side M| M, at its midpoint P, is MP = r;. These pentagon-related
circles can be seen in figure 5-14.



Figure 5-14

Once again looking at figure 5-13, and recalling our findings from chapter 4, we
can better define the right AMM;P, by establishing that
L MM P=54° and LM MP=36"



Then we see that

sin ZMigp="L. =514
MM, r 1
and
sin 54“—@=% %—E (see p. 125)

So we can finally determine that /i~ 2"
Because the diagonals of a rhombus are perpendicular bisectors of each other,

M=l = = -E—
AM=2-MP=2r=2 g . Therefore, we have found that the length of one of
the petals of the floral design is equal to the golden ratio.

CURIOSITY 8

Again, we encounter here an unanticipated emergence of the golden section. In
figure 5-15, we have two circles, ¢; and c,, which are tangent at point B, have

their centers at M; and M,, and have radii r; = AM; = BM, and r, = BM, = CM,.
If the smaller circle, c,, is so constructed that the point C is the center of gravity
of the shaded region (we call this shaded region a lune), then any chord of the
larger circle, c;, from point B will be partitioned by the smaller circle, c,, into

the golden section. This means that point C partitions AB into the golden section,
as well as any other chord of the larger circle from point B, such as, say, DB
(shown in fig. 5-16), where the point E, at which the smaller circle intersects DB,
will also determine the golden section of that line segment, DB.

Figure 5-15



Ei -
Figure 5-16

Let's use figure 5-16, where circle c, is so constructed that point C is the center
of gravity of the lune. The curiosity that we want to establish here is that circle

.
n

C, is so constructed that the ratio of the radii % ~ 9. This will then allow us to also

show a further, and perhaps even more amazing, curiosity that the point E
(where circle ¢, intersects BD) partitions the chord BD into the golden section.

To justify this curiosity, we begin by establishing the areas of the three figures
—the two circles and the lune—in figure 5-16:
Area =nr], Area_=nr;, and Area, = a(ri-r).
1 _: L ne .

We also need to express lengths in terms of the radii so we have
CM,=BC-BM =2r,—r, and M\M,=BM ,—BM,=r—r..

We now consider a balance scale with the fulcrum at point M;. With C the
center of gravity of the lune and M, the center of gravity of the circle c¢,, and

knowing that they will balance the scale proportional to their weight, we get the

following:

CM,-Area, , =M M,-Area_, or (2r,—r)Area, = (r—r,)Area_.

Lune

3 a

Therefore, (21— 1) n(ri—r;)=(r,—r,) 7r;.
Dividing both sides of the equation by p gives us
(2r,—r)(r,+r)(r,=r))=(r,—r)-r;.

Then, dividing both sides of the equation by r; — r, we get

-

2r,—r))(r,+r,)=r;, or in other form: r; +r,r,—r;=0.



2 i}
Now dividing by '1 and at the same time replacing  with x, we get our now-
familiar equation that will give us the golden ratio: x> + x — 1 = 0, where the

H
(positive) root is ¢
Lol =@-r . . . .
Thus *=7 =% 9T 01y which is one of the relationships we wanted to
demonstrate.
Not only are the radii in the golden ratio, but also the line segment AB can

now be shown to be partitioned into the golden ratio by point C. This we can

BC B¢ 2 B K
AC_AB—BC_E;'I—EJ': _rl—r: _r;i'r_,_—r_ﬁ_
o 1 1 2 541
Th@-D) -1 il 2 il 2 7
show as follows: 2 2

Figure 5-17

To complete our original claim about the smaller circle partitioning any chord of
the larger circle that contains the common point of tangency into the golden
ratio, we will consider any randomly selected chord, DB, of the larger circle, ¢y,
to see if it is then partitioned into the golden ratio by the smaller circle, c¢,. In
figure 5-17, E is the point of intersection of the circle ¢, with chord DB. Since

the angles at D and E are each inscribed in a semicircle, they are right angles.

The right triangles ABD and CBE are similar and AD || CE. Therefore,
BE _ BC _
DE—Ac =9

When we reflect on this curiosity a bit, we notice how surprising it is that once

again ¢ comes up when least expected.

CURIOSITY 9



We now embark on a rather different configuration and search for the golden

ratio embedded within it. We shall begin by taking a square with side length 2

and along two opposite sides construct two congruent semicircles each with
|

radius 2° as shown in figure 5-18. We will show that—surprisingly—the radius
of the circle constructed tangent to the four semicircles is the reciprocal of the
golden ratio.

Figure 5-18

In figure 5-19, we repeat the above configuration, where AB = BC = CD = AD =

2, yet this time with some auxiliary line segments. Clearly, the radii of the

L b5 o
semicircles are AG=EG=GP= "

D K F J Cc

Figure 5-19

Applying the Pythagorean theorem to the right AEGM, where EM = 1,
EG=%,and GM=GP+MP =%+,



) - ()

: . Lppgt=144 : 2 :
which results in 2 4° and then gives us r~ + r — 1 = 0. Once again,

aii]

we find ourselves with the equation that will yield the golden section, "~ %" (By

now, we are accustomed to ignoring the root == ?. since it is negative.) Thus,
I _\5-1

P P e Tl i——

the radius of the center circleis @ 2
It is curious how, once again, unexpectedly the golden ratio appears.

CURIOSITY 10

In this curiosity, we will actually begin with a constructed golden section and
have it “automatically” assist us in constructing the golden section on other line

segments. Our “tool” for doing this golden section construction is the arbelos,2 a
figure obtained by drawing three semicircles, two along the diameter of the third.
The two smaller semicircles can be of any size, as long as the sum of their
diameters equals the entire diameter of the third semicircle. Thus, as shown in
figure 5-20, AS + SB = AB. This figure was known to Archimedes (287-212
BCE), who studied it extensively. The arbelos draws its name from the Greek,
meaning shoemaker's knife, since it resembles the tool used by ancient
shoemakers.

Figure 5-20

What distinguishes our arbelos from all the others is that we have constructed
ours with one extra stipulation: The diameters of the two smaller circles are in



the golden ratio—that is, %: . (See fig. 5-20.)

In figure 5-21, we have r; = AM, = SM, and r, = BM, = SM,. The radius, r, of
the large semicircle is r = r; + r, = AM = BM. The usefulness of this special
golden ratio arbelos is that, for any point C on the larger semicircle, the two
chords drawn to the semicircle's diametrical endpoints are related by the golden
ratio. We might therefore want to call this the golden arbelos.

J,Ia

AS
Symbolically, for 1gure 5-21, where we began with 5= B85 =¥ we then also

AC . AD. . ¢; and ...... {t' — ¢; .
have 4D~ b~ {F BE — ¥+ Thus, we have created a tool that determines

the golden ratio for a given line segment: Here in figure 5-21, the two line
segments so partitioned are AC and BC.
We also find that the semicircular arc lengths b, by, b, (fig. 5-20) are in the

ratio of ?*1:%: and the ratio of the respective areas of the semicircles is

o1z E} This is not intuitively obvious, despite the special type of arbelos
having the golden section.

It is also interesting to inspect the relationship of the perimeter and area of the
arbelos with respect to the diameter (AB). Let us now embark on justifying these
characteristics of this special arbelos.



E; ]
Figure 5-22

We can easily justify that point D partitions the segment AC into the same ratio
as S partitions AB, namely the golden ratio. Similarly, the point E partitions
chord BC into the same ratio. We notice the right angles in figure 5-22, since
these angles are inscribed in a semicircle. And we also have similar triangles:

AABC, AASD, and ASBE. Furthermore, since CDES is a rectangle, we also have
AS _ AD _
CD = ES and CE = DS. Therefore, 58 ~ S5E =¢- As we hinted at earlier, this

argument can be repeated analogously for chord BC.

We can also appreciate the converse of this beautiful relationship. Suppose AC
is just any chord in the semicircle with diameter AB. Suppose further that D
determines the golden section of AC. Then the locus of all such points D is a
semicircle with diameter AS, where the point S will determine the golden section
of AB.
HAS an extrf_e_lttraction, let us consider the arc lengths of the three semicircles:
AB=b=nr, AS=b,=nr,, and BS=b,=1r..

Then:

bl :rml no 2 AS b, zr, 1, 2, BS

We shall now consider the areas of the three semicircles:

AB: Area, =%.AS: Areaf%, and BS: Area, :’T;‘:_.

Then, when we take the ratio of the areas of these semicircles, we once again
find the golden ratio emerging.






and

T

Al‘ﬁﬂhl e i woaedily 1: & :: A_S E:gﬁ:
Area, 7r, r 2r, ( BS ‘
2

As for the last property we mentioned about the arbelos, we have for the
perimeter:

P,peo=b+b+b,=mr+an+nr,=n(r+n+n)=n(r+r)=2nr=nAB.
The area of the arbelos can be obtained as follows:

xr: wr’ mrl mr+rn) mrt mrl
Area,. . .=A—(4;+4))= L VL -
i 2 2 2 2 2 2

Figure 5-23

As a bonus to this curiosity, we can also say that if the legs of a right triangle
(here, in fig. 5-23, we refer to right triangle ABC) are in the golden ratio, then the
altitude, CF, to the hypotenuse, AB, determines the golden ratio as

CF _ BF _
Gr=¢and &z=9.




CURIOSITY 11

The Chinese symbol yin and yang (fig. 5-24) depicts opposing forces and
intends to show that they are interconnected in nature. This concept is key to
much of Chinese philosophy and science. As you might expect by now, once
again the golden section is embedded in this symbol.

Figure 5-24

The yin and yang design is comprised of two congruent semicircles on opposite
sides of a diameter of a circle, whose diameter is twice that of the two smaller

semicircles. (See fig, 5-25.) Figure 5-25
If we let the length of the radius of the larger circle (fig. 5-25) equal 1, then

=2 M=DM=1 - : .
AB=2and CM =DM =3. 15 ghis figure, we now add circles c; and c,, each with

point A as center so that they are tangent to the congruent semicircles at points E
and F, respectively.



We then have r; = AE and r, = AF. Since CE and AE are both perpendicular to

the tangent to both circles (were it to be drawn) at E, they must coincide. This
enables us to apply the Pythagorean theorem to AAMC, which gives us

-5 o] ] :1 5
AC =AM +CM? = |-+[1J =£.
2 2
Therefore, r]=AG=AE=AC+CE=§+%=t,b. and
v5 1.1
r,=AJ=AF=AD-DF=AC-DF=—"—7 5

There, once again, appears the golden section.

In figure 5-26, ZAGB is inscribed in a semicircle, and therefore it is a right
angle. Thus, we can apply the Pythagorean theorem to right triangle ABG, to get

BG:’\/ABJ—AG: :J2:_¢1:J4_¢_:J1{]—22ﬁ :\/S_;/g:\{ﬁt;.l_

In our investigation of the golden pentagon, we found that for a circumscribed
circle with radius length 1, the side of the inscribed pentagon is

T 1|'Ii;3+ J@ +1 \f¢3+l‘

¢ ¢




Hence we have from within the yin and yang not only the golden section but also
the golden pentagon, as shown in figure 5-27.

CURIOSITY 12

This curiosity builds on the investigations we made in chapter 4 about the
regular pentagon. Yet it requires one of the most powerful theorems—that is,
sadly, too often neglected—from plane geometry. This relationship, first
discovered by the Greek mathematician Claudius Ptolemy (ca. 90—ca. 168),
provides us with a valuable relationship between the sides and diagonals of an
inscribed quadrilateral. The theorem states that, for a quadrilateral inscribed in a
circle, the sum of the products of the opposite sides equals the product of the

diagonals.# In figure 5-28, we have inscribed quadrilateral ABCD and
AC-BD=AB-CD+BC-AD, or

e-f=a-c+b-d.



Figure 5-28

Now that we have mastered this lovely relationship, let's consider the regular
pentagon ABCDE in figure 5-29 and focus on the isosceles trapezoid ACDE,
with sides length a, bases length a and d, and diagonal length d. This trapezoid
happens to be an inscribed quadrilateral, and therefore, we can apply Ptolemy's

theorem (fig. 5-29):
AD.CE=AC-DE+AE.CD
d-d=d-a+a-a, or
d’=da+a =ald+a).

We can rewrite this equation as a proportion, which then delivers for us the now-

. ata Ld
familiar result 7 =4 = ¢-
AD _ AQ —Ei—qb

Remember that in chapter 4 we already established that 40 ~ DO~ Ok —




Figure 5-30

Suppose we now randomly select a point X on the pentagon's circumscribed
circle (fig. 5-30), but not at one of the vertices of the pentagon. Applying

Ptolemy's theorem to quadrilateral ACDX gives us
AD.CX=d.CX=AC.-DX+AX.CD=d-DX + AX .a.
Therefore,

d:CX=d-DX+AX-a,



which leads to
d-CX—-d-DX=AX-a,
put another way:

d __AX
a~-CX-DX°

N AX
which is CX—DX = 0.
We leave other rich relationships to be found in this configuration to the reader.

CURIOSITY 13

Most of the beauties involving this golden section are drawn on paper, yet one of
them can be achieved by simply folding a knot with a strip of paper.2 Just take a
strip of paper, say, about one inch wide, and make a knot. Then very carefully
flatten the knot as shown in figure 5-31. Notice the resulting shape appears to be
a regular pentagon.

Figure 5-31. Photographs by |. Lehmann.

Figure 5-32 shows this in more detail.

stotetioie

Figure 5-32




Through this paper-folding exercise, we can see the pentagon and the pentagram
(with one part missing). This configuration allows us to visualize each of the
diagonals of the pentagon parallel to one of its sides—since the sides of the
paper strip are parallel. If you use relatively thin translucent paper and hold it up
to a light, you ought to be able to see a pentagon with its diagonals. These
diagonals intersect each other in the golden section.

If you now unfold this paper strip, you will have a parallelogram with four
congruent isosceles trapezoids, each with three sides equal to the length of the
sides of the pentagon, and the fourth side the length of the diagonals of the

pentagon (fig. 5-33).

Figure 5-33. Photograph by |. Lehmann.

Elaborating on this a bit, in figure 5-34, we find that the shorter side of the
parallelogram has the length of the side (a) of the pentagon, and the long side is
the sum of twice a side (a) and twice a diagonal (d = ?a) of the pentagon, that is,
2a + 2d = 292a. The height (h) of the parallelogram is equal to the width of the
paper strip.



Figure 5-34

The angles are o = 36°, § = 108°, and y = 72°. (See chap. 4.) From the figure's
—d—a _ O

symmetry, we get a + 2x = d. Therefore, * = 3 ~ 2¢°
We represent the width of the strip as h, the side length as a, and the
pentagon's diagonal as d.

P o T
We then have 7~ sin72 _EI and
sin ?‘”‘:‘mg"-ﬁ= 5+45

1.
2V 2

(V]



from which we get




and

4 .
d=2‘“12§’ ﬁh=‘g{_} S35 4

CURIOSITY 14

Now we will examine a particularly curious problem. It was made popular by the
English mathematician Charles Lutwidge Dodgson (1832—-1898), who, under the
pen name of Lewis Carroll, wrote The Adventures of Alice in Wonderland.® He
posed the following problem: The square on the left in figure 5-35 has an area of
64 square units and is partitioned into quadrilaterals and triangles, and then these
parts are rearranged and reassembled to form the rectangle on the right in figure
5-35.

Figure 5-35

This rectangle has an area of 13-5 = 65 square units. Where did this additional
square unit come from? Think about it before reading further.

All right, we'll relieve you of the suspense. The “error” lies in the assumption
that the rearranged triangles and quadrilaterals, when placed as in the right side
of figure 5-35, will all line up along the drawn diagonal. This turns out not to be
so. In fact, when put together properly, a “narrow” parallelogram is embedded
here, and it has an area of one square unit (see fig. 5-36).



Figure 5-36
We can discover where the error lies by taking the tangent function of the angles
marked a and 8 so that we can discover their measures. Remember, they ought
to be equal if they lie on the diagonal.”

tan a= 3, then a=20.6%

tan B=2, then B~21.8°.

The difference, f — a, is merely 1.2°, yet it is enough to show that they are not on
the diagonal.
You will notice that the segments above were 2, 3, 5, 8, and 13—all Fibonacci

numbers. Moreover, you can proved that F_ F=F +(=1)" where n > 1. The
rectangle has dimensions 5 and 13, and the square has a side length 8. These are
the fifth, sixth, and seventh Fibonacci numbers: Fc, Fg, F-.



This relationship tells us that
F,F.=F>+(-1)°
5:3=8"+1
65=64+1
This puzzle can then be done with any three consecutive Fibonacci numbers as
long as the middle number is an even-numbered member of the Fibonacci
sequence (i.e., in an even position). If we use larger Fibonacci numbers, the

parallelogram will be even less noticeable. Whereas if we use smaller Fibonacci
numbers, then our eye cannot be deceived, as in figure 5-37.

3 2
2
3
\ 5
3
3 2
Figure 5-37

Here is the general form of the rectangle (fig. 5-38).

Faa Fuz Fy Fe
Fua Faz
F o Fa Faa
\ Faz
£y
Fol Fa
Fa
I
F a1 Foa
Figure 5-38

To do this properly without having the “missing area,” the only such partitioning
—amazingly enough—is with the golden ratio, ¢, as seen in figure 5-39.



1 #'_I & 1

¢! gl
1 1 1
ﬁ_l
# ¢
1 @
1 ¢2= g+ 1
|$I'|
1 !s,-l
9
Figure 5-39

The areas of the rectangle and the square are equal here (fig. 5-39) as we shall
show now:

:qb-qb:qb::qbﬂ:ﬁﬂ =2.61803..., and
The area of the square 2

=(p+1)-1=¢+1=Y3+3 2261803, ..
the area of the rectangle 2

Thus the areas of the square and the rectangle under this partition are equal.
Once again, we find that the power of the golden ratio manifests itself in giving
proper meaning to this dilemma.

CURIOSITY 15

Although it may seem a bit contrived, this appearance of the golden section is
quite surprising and requires us to make a “cross” composed of five congruent
squares of side length 1 and cover it with a square that has side length a and an
area equal to that of the cross. The square should be placed in such a fashion that
four small squares are formed in the corners, as shown in figure 5-40. These four

small squares will have sides b =?£ » and the sides of the large square will have

length @=+/5. Furthermore, the golden section also appears in the sum of the

areas of the portions of the cross that are not covered by the large square. This
4

turns out to be #°



1 1
1 1
1 1

a

1 1

b 1 1 b
b b
1
Figure 5-40

By inspecting figure 5-40, it is clear that if the area of the square is equal to the
area of the cross, namely 5 (since it is comprised of five unit squares), then the
side of the square is a=+/5..

We can see in figure 5-40 that the side of the large square is @=2b+1=/5,
J5—1 1
b=- =—.
which then leads to 2 9
Finally, to get the sum of the areas of the parts of the cross that are not covered
by the square [i.e., four rectangles, each with dimensions 1 x (1 — b)], we do the

Area=4-1-(1 —3;};4-£1—i) ;4-[|—‘5_[);2~ (3—J§}i.
following: ? & , | ¢

As we predicted, we arrive at a value involving the golden ratio—again at a time
when you might have least expected it.

CURIOSITY 16

There are times when the golden section just happens to be in a commonly seen
design. Take the Cross of Lorraine, which was suggested by General Charles de
Gaulle (1890-1970) for the French flag (fig. 5-41) to represent the Free French
as resistance to the Nazi occupation; it recalled Joan of Arc (ca. 1412-1431),
who bore this symbol on her flag in battle against the English. Today, it can be
seen as a 140-foot monument in de Gaulle's hometown of Colombey-les-Deux-
Eglises (fig. 5-42). It can also be seen (in partial form) on the coat of arms of
Hungary.



o

Figure 5-4 |, Flag of Free
France 19401944,

Figure 5-42. Monument Colombey, for
Charles de Gaulle in Colombey-les-
Dem-églises.

This cross is constructed by thirteen congruent squares of side length 1, as
shown in figure 5-43. If we now construct a line segment that divides the total
cross area into two equal parts, then a most unexpected result appears. This area-
dividing line segment QPS partitions each of the small-square sides at its
endpoints, Q and S, into the golden ratio!



Figure 5-43

We will now set out to justify this remarkable occurrence—this strange and
unexpected emergence of the golden section. Since the cross is comprised of
thirteen unit squares, its total area is 13. The area of half the cross is comprised
of ACQS plus four unit squares (see fig. 5-44).

We will seek the lengths of BQ = x and FS = y, since that will help us
determine if Q and S divide the sides of the unit squares in the golden ratio.

o =T

Figure 5-44

4 5

. . Area, ., =B-4=3 .
For the triangle ACQS we find ACOS T3 2* This area can also be



CO-CS (BC+BO)CF+FS) (1+x)(3+y)
Area ACOS = = = ;
represented by 2 2 2

Equating these two expressions for the same area gives us the equation
(+x)3+») _5

2 2" This then leads us to the following algebraic steps:
(1+x):(3+y)=5

[-(3+y)+x-(3+y)=3

. 2—y
2—y; therefore, x=5—=

3+y
.. 20 P DE . .
Because ABQP and ADPS are similar, we get nr = bs ~ DF+Fs* which, when

x_ |1 —

: L E= X -
expressed in terms of xand y,is | 2+»’andso” 2+»
o O
We then equate the two values we found for x and get 3+» 2+~
This, amazingly, leads us directly to the equation that yields the golden ratio:

y2 + y — 1 = 0, whose roots are: y = — ¢ (which we cannot use since it is
J5-1 1

x(3+y)=3-3-y

y= e
negative), and 2 ¢



Then

24y . 2 2
3 2+J§21 ¢

Note: The algebra that gave us this result is

3-45 3-45 543 2 1 L1

X

- = = - T
2 2 A543 543 543 o+1 ¢

2

Now that we have the values for x and y, we can show that the points Q and S
partition the segments AB and FG, respectively, in the golden ratio. For segment
3-45

.4‘(_)__]—1‘__'_ > S+l

BO «x 3—4/5 5 P
AB: 2
and for segment FG:

J5-1

FS  FS y 5 V5-1_+5+1_

GS FG-FS 1=y 5.1 35 2 *

R
2
Therefore, we have shown that when the segment PQS divides the cross into two
equal areas, the points Q and S must partition the segments AB and FG,
respectively, in the golden ratio.

CURIOSITY 17

To experience our next curiosity, we begin with a square and construct a line
segment from one vertex to the midpoint of one side. We then come to the
critical part of the construction, that is, to construct a circle tangent to the other
two sides (as shown in fig. 5-45, the sides are BC and CD) and to the line
segment, DE, which we just drew inside the square. The golden ratio will now
appear in several places. First, the line, DK, from a vertex of the square and

through the center of the circle? intersects the side BC at point K, and partitions



K
it into the golden ratio: sk ~ ?: for convenience we use the side of the square as
length 1.

Furthermore, the radius of the circle, "=%" As if this were not astounding
enough, the circle's tangency points with the sides of the square provide the
golden section of the sides, and the circle's third tangency point partitions the
interior line segment in the the ratio 2 : ¢.

Now let's inspect this in a bit more detail.

D

Figure 5-45

5 ]
In figure 5-46 we have square ABCD, with AE=BE=3. point F is the
BF _ BE _ 1
intersection of the lines CB and DE. Since AB || CD, it follows that cF ~¢bp ™ 2°
BF _ x _|1

which gives us BF+BC ~ x+1~ 2’ and then we get x = 1.
In right triangle CDF the Pythagorean theorem gives us DF=4+/5.
Furthermore, because AAED =ABEF,

DE:EF:@.

The radius, r, of the inscribed circle of ACDF can be found from the formulal®
= a+bh—r

1 * where a = CD, b = CF, and ¢ = DF or in the following way: Since
AFBE ~AFCD, we have x = BF = 1, and we have

CF=BC+BF=1+1=2.

Therefore, FJ/=DF-DJ=DF-DH=+/5-(1-r)=+5-1+r, and also FG =
CF-CG=2-r.

Since FJ = FG, V5-l4r=2-r, whereupon it follows that




D H C
r
r
-
G
M
1 r
J
K
A 1 E 1 B
2 2
X
F
Figure 5-46

Recall that the center of the inscribed circle is the point of intersection of the
angle bisectors of the triangle. When the Pythagorean theorem is applied to

ADHM (fig. 5-46), we have DM =+ DH’ + HM? =1f{1—r}l 4+ :\/5—2\/5
The next few steps follow easily:

35 _-1_1
2 2 ¢

BG=DH=DJ=1-r=1



B}=DE-py=2_Y2—1 __
2 2
L
BG 1-r ¢ o' —1_
r Pl - (py-1=¢
G o+ 1 1 7 g '
@J
B£ = l = I = Qﬁ: :ﬂ :;zj
BG 1—i I ¢ -1 ¢

which shows the partltlon mto the golden ratio as we anticipated above.

DH _ CD _ 1 B
Analogously, ©H ™ =¢.and 55=1""=0. purther to the list of ¢

appearances that we mentloned earher we can admire the following:

DJ _1-r 2
2 (1=P=2-(1—)=2_3+.5
T R ¢} =5- )

2
We now need to inspect the partitioning that point K does to BC, where K is the

point at which the bisector of ZCDE meets CF. Point K divides the side CF of
triangle CDF proportional with the other two sides CD and DF.

CK _ (TJ: ]
FK DF 45
With FK = CF — CK = 2 — CK we get
CK_ CK _ |
FE 3=CK 5
Then 2~ CK=CK" V5, or CK'_ It follows that BK=BC- CK']__:T

We are finally ready to set up the ratio we originally sought:

K
BK

&
o _
1T

¢’

which tells us that the angle bisector partitions the opposite side of the square



into the golden ratio. When we look back at the simplicity of the original
proposition—setting aside the computation that brought us here—again we have
a truly wonderful appearance of the golden ratio.

CURIOSITY 18

Here we have a little treat! Where you might least expect it, once again, the
golden ratio pops up.

In figure 5-47, we have a square partitioned into four congruent trapezoids
and a smaller square; all five parts have the same area. If the sides of the smaller
(inner) square have length 1, then the sides (a) of the larger square will have

length +/5 and the height of each trapezoid will have length *~ ¢l

In figure 5-48, we have a square partitioned into four congruent rectangles and
a smaller square; again, all five parts have the same area. If the sides of the
smaller (inner) square have length 1, then the the sides of the larger square (a)
will have length V5. The widths (shorter sides) of each of the rectangles then

=y .
have length *~ %" and the longer sides have length a — x = ¢. These are rather
unanticipated appearances of the golden section! Let's see why this is true.

Figure 5-47



Figure 5-48

da—1
In both figures 5-47 and 5-48, ¢ =2x+1,0r x="5". [ et's find the area of one of
the trapezoids in figure 5-47. Remember, the area of a trapezoid is equal to one-
half the product of the height and the sum of the bases.

i _fa+W\_a—1 a+l1_a*-1
Area ( 5 J_ TRl m

Fapezoid™ -

Since the area of one of the trapezoids is the same as the smaller square, we

a'—1 _1 which e o2& _
get: 1 =L, Which is a’=35, or a=~5. Then to find x, we use the earlier

a-1_+5-1_1

x= = —.
equation: 2 2 Y
In figure 5-48, the area of the square is to be five times that of the inner square,
or 5 times 1. Therefore, a = v/5. for a, we get V3 =a=2x+1, whereupon it

_5f5=1

=

|
follows that 2 '.95"




Then

. |
pa |

Once again, the appearance of ¢ is clearly justified.

CURIOSITY 19

Just as we were surprised with the unexpected appearance of ¢ in the previous
curiosity, so, too, it is astonishing that the golden section will once again appear
where we have no reason to expect it, as in the following configuration.
Consider the rectangle ABCD, which in figure 5-49 has points P and Q on lines
AB and BC, respectively, so that it is partitioned into four triangles: ADPQ,
AADP, APBQ, and ACDQ, where the three shaded triangles have the same area.
This produces an astonishing appearance of ¢, namely that points P and Q

partition the sides AB and BC into the golden section.l! Imagine, the location of
points P and Q is determined to create equal areas and results in partitioning the
line on which they lie in the golden section.

D C
d
Q
c
A b P a B
Figure 5-49

(Although the justification of this is rather simple, we shall provide it in the
appendix so as not to disturb the flow of curiosities here.) CURIOSITY 20

This time we shall begin with lengths related to ¢, by constructing a triangle,
AABC, with sides of lengths ¢ = ;b= 9/0,and c=¢+1, and show that it will
produce a right triangle. (See fig. 5-50.)



oo g

A ¢+ 1 B
Figure 5-50

Using the converse of the Pythagorean theorem, we will show that this triangle

is, in fact, a right triangle, sincel2

(VO Y+ =@ +¢"=d(¢+1)=(+1)(¢+1)=(¢+1 ),

and therefore, AC? + BC? = AB?, which tells us that ZACB is a right angle.
Furthermore, the area of this triangle (in terms of ) is

;
Areanspc = Jf}_

r

which is obtained by taking one-half the product of the legs of this right triangle:

L (6)(B) =L B =71

2

Figure 5-51

If, as in figure 5-51,12 we have BD = 1 and we construct the median (CM) and
the altitude (CD) to the hypotenuse AB, we find the distance between them is



(¢+1)

2 2 29
_¢=¢_(#+1)p_ 1 _5-1

DM=BM-BD=

2¢ 20 20 4
There are some more little features worth citing, namely that the areas of the two

triangles determined by the altitude CD also can be expressed in terms of the
3

Areapscp = , and Areasgcp =—¢
golden ratio: 2 .14

This shows that Area,, =@+ Area, .,

And, last, but not least, the ratio of the side lengths is

AB:AC: BC=(p+1): @ : p=07 : 1: 672
CURIOSITY 21

Our next curiosity will build on the previous one. We shall begin by taking the
configuration that we produced in Curiosity 20 and represent the lengths in a

somewhat different way, yet keeping the values the same. Thus, we have the
a=BP=y,.

b=AP= ¢~ =¢2,
lengths as shown in figure 5-52: ¢ =AB=¢+1=¢"

P




We will now draw a series of perpendiculars and parallels in succession. The
perpendicular line to AB at B (=B,) intersects the line through A and P (=P,) at

P,, the parallel line to B{P; through P, intersects AB at B,. (See fig. 5-53.)

Ei

Here, BB, =¢"=1
P,P,=B,P, :;35%
AB,=B,P,=B,B,=¢'=¢
AP,=B,P,= ;35%. and AB,=B,P,=¢’
AP, :gsﬁ%. and AB,=¢"
This process can then continue as shown in figure 5-54.



Figure 5-54

As one might have expected by now, we have a geometric representation of the
powers of the golden ratio and at the same time the Fibonacci numbers (see also

chap. 4, pp. 92, 127):

AB,=AB,+ BB, — d’=1¢+1
AB,=AB +B B, =  $=2¢+1
AB,=AB.+B, B, = ¢ =3¢ +2
AB,=AB,+B,B, = ¢’ =5¢+3
AB,=AB,+B, B, =5 P°=8¢+5
AB =AB_,+B B, = ¢"=F.¢+F,_, (forn>0).

Once again the golden ratio provides us with yet another example of the close
connection between algebra and geometry. Were we to do this in reverse, we
would have the segments as noted in figure 5-55.



Figure 5-55

This would give us the sequence 07, 07, 07, 07, 07, 67 .. for which the
analogous construction of the triangles produces
b=+ g7+ TP+ P+

We can also construct a rectangular “spiral,” where the n™ side lengths are
these powers of ¢ (fig. 5-56). The spiral approaches the limit point determined
by the intersection ByB,’ and B;'B5'.



y \ ﬁ 65’/
. 1pe
4 P 5
? |
B0 (p)0=1 B

Figure 5-36

The length of this rectangular  “spiral” is finite, namely

I+ ¢+ 7+ 97+ +...=1+¢d=¢
CURIOSITY 22

Yet again we have a simple situation in which the golden ratio appears quite
unexpectedly! We begin with a parallelogram ABCD with an acute angle of
measure 60°, and then two isosceles triangles are formed as shown in figure 5-
57. The two parallelograms, ABCD and DEBF, are similar if their corresponding
sides are in the same ratio, (a + x) : a = a : x. This should remind us of the
golden ratio, where the ratio is then (¢ : 1.

Then the ratio of the areas is the square of this ratio of similitude, namely

*ﬁr’:a_.mm : ﬁr’:afgr,f;: ¢'_ : 1. ThlS is easily jUStiﬁed.



A a E X B

Figure 5-57

AB_DE

From the similarity of the parallelograms, we have BC ™ BE* which is also
atx_a . . : :

a  x" This will lead us to a now-familiar quadratic equation: x

+ax—a’=0,
=1 . . .

where the positive root is * =%, Therefore, the ratio of the corresponding sides

of the similar parallelograms is @ * *=¢ : 1. and the ratio of the areas of the two

-

parallelograms is AT€8cp * Areag;p=¢" : L.

D X

-
o
O

Figure 5-58

Alternatively, we can also show the ratio of the areas of the two parallelograms
h= ﬁ d,

independently. The height, DG, of AADE is 2

which also serves as the height of each of the two parallelograms. Therefore, we

can calculate the area of each of the parallelograms using the formula: the

product of the base and the height.



Area,,.,=AB-DG=(a+x)-h
_ ) -
V3-(5+1
:[ ..]l.-la] ﬂa:@ﬁaz_ ( )'(J_.
2 2 4
7 B(V5-1
f“xrcamm:BE-DG:r-h:lﬂ.“hag\/_ (V5 ),a:-,

[0, 2 4

Then the ratio of the areas of the two parallelograms is

Area, ey, + Aredy,= [g&%mﬁj : [é-%wﬂzj ==g*"

a=SEle-N

This can also be written as AT€8, ¢y & Ar€ay = ¢’ 1=(¢+1): L.

CURIOSITY 23

The trapezoid presents us with a curious occurrence of the golden section. In
figures 5-59 and 5-60, we have trapezoids ABCD, one isosceles (fig. 5-60) and
one not isosceles (fig. 5-59). The line segment FE, which joins points E and F on
the sides of the trapezoids, is parallel to the bases. The bases have lengths 3b and

&+ b

EE ==
b, as shown. The length of 2
We call FE the root mean square, X2 and it has the property that divides the
original trapezoid into two trapezoids of equal area. Of particular interest to us
here is that this segment, FE, partitions the two sides of the trapezoid in the
golden section.



B b &

F E
/T \
A a=3b B

Figure 5-60

So far, the following is given: The parallel bases are AB = a, CD = b, and a = 3b.

Also
EF = ¢ = ||ff“ +b° |
2

Since b < a, we then have b < c < aq, as

_ |9 + b’

¢ =+/5h < 3bh.

This justifies that the line segment EF actually does exist, since its length lies

between the lengths of the bases. We shall now refer to figures 5-61 and 5-62,

where DG || BC and BG = CD = b. Then because of the similarity of AADG and
AD AG 2 2 2 2 Af5+1

ADFH, we get DF FH FE—EH c—b bJ5—b 5-1 2 /.




DF _
This allows us to conclude that -iF = #* and once again we arrived at our golden
ratio!

D b C
I
I
I
he ||
|
I
F L ||H E
I
I
h1 |
I
[1 1
A K G b B
. - S
a=3b
Figure 5-61
D b c
\
hs
F L \H E
m II"-.I
‘ulll\
A b K b G b B
b y A
Figure 5-62

The altitudes of the trapezoid are also partitioned into the golden section. In
figures 5-61 and 5-62, we note that the altitudes DK = KL + DL = h; + h, and DL
= h, give us the golden ratio as h, : h; = ¢ : 1. We leave to the reader to show
that the area of the original trapezoid is, in fact, divided in half by FE.

For the ambitious reader, we offer a concise procedure to construct this
configuration in the appendix.

CURIOSITY 24



Here we will consider an isosceles trapezoid that can have an inscribed circle
(one tangent to each of its four sides), and where the trapezoid's circumscribed
circle has its larger base as the circumcircle's diameter. This special trapezoid
has the golden ratio embedded in it.

We will use the isosceles trapezoid ABCD (shown in fig. 5-63) with sides AB
=a, BC=b, CD = c, and AD = b. It has an inscribed and a circumscribed circle,
where AB || CD and AB = a, which is the diameter of the circumscribed circle c,,.

o R
Then the radius of the circumscribed circle is o= 73+ and é=2ZBM C. we then

b:;—; and c=a(2=h)
o

have the following unexpected properties: " and the radius of

the inscribed circle is ~ 2¢°

Figure 5-63

As a bonus, we also can show that the golden ratio also appears in relation to an

angle, namely @ when the sine  function is  applied to
/ BM C=g, we find that sin€=1,

27 ¢
(The justification for these appearances of the golden ratio can be found in the

appendix.)

CURIOSITY 25

Sometimes a sighting of the golden section is not only unexpected but also not

intuitively obvious. Here we begin with a right pyramidl® with a rectangular
base. All lateral sides are, therefore, isosceles triangles as shown in figure 5-64.
A plane containing one side (BC) of the base and intersecting the opposite lateral



face in line segment EF divides the volume of the pyramid in half. The
fascinating thing here is that the points E and F partition the lateral edges, AS

and DS, respectively, in the golden section, that is, E5 ~ 1 and AE ~ 1" The same
. . DS=¢ gnd £S5 =¢
holds true for point F with regard to DS, namely 75 and DE~ T°

ure 5-64

g

CURIOSITY 26

This curiosity may appear to be a bit contrived, yet it shows the strange ways
that the golden section appears where it may be least expected. We begin with a
trjang]e AABC, where AB=2, BC=1, and AB 1 BC, 35 shown in fjgure 5-65.
We will call the point C = C,, for convenience, and it will allow us to make a

generalization at the end of this curiosity. We now bisect £ ACE with a line
segment that intersects AB at point C_;. At the point C (or C;), we will construct
a perpendicular to C_;C,, which will intersect the line AB at point C;. Then at
point C;, we will construct a perpendicular to C,C; to meet BC at C,. Repeating
the process, we have at C, the perpendicular to C;C, intersecting AB at C;. We

then get points C., G, ..., G (wheren20) i the same fashion.Z The result is
BC, BC, BC, BC, BC, BC, _BC 1

“n=T..

that BC, BC, BC, BC, BC, BC, ==~ BC, ¢

s}




and

BC=¢ BC =¢" (forn=-1,0,12,3, ...).

Ca
G=CD
v
2/d
G A C,|B C; Cs
Cs

Figure 5-65
To see why this holds true, we shall go back to the original triangle AABC,
where AB=2, BC=BC,=1, and AC=+/5. [f e let BC_; = x, then AC_; = 2—x.

AC _ BC o 5 _1,
Since CC_; is an angle bisector, AC, BC, 2—x %

which then gives us * =+l We then have BC_,= ¢, BC,=¢"(=1) and BC,=¢".

In general, the right triangles of the form ABC,C.., are all similar to each
BCy, BCG RBC, BC; BC; BC  BC. ¢

other. Therefore, BC, BC, BC, BC, BC, BC, BC,, I’
forn=0,1, 2, 3,....




With
BC, 1
BC, ¢

we get BC,=¢BC_.1n general, forn=0, 1, 2, 3,...BCn =¢-BC, ,=¢".
Without the distraction of the auxilary line in figure 5-65, this sort of “spiral”
can be a bit more attractive—as shown in figure 5-66.

=¢g—'

Figure 5-66

=)
L=
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Our next curiosity will not be geometric but rather use a pattern that should not
prove to be too strange, although it may look so at the start. We will consider a

sequence of 1s and 0s as shown here:
101161011011010811010110110101101 ...
The construction of this sequence is quite simple. We begin with a 1. Then the

next step is to replace the 1 with 10, as you can see in the listing below. Then, in
each succeeding step, we replace the 1s with 10 and the Os with 1.



GOLDEN STRINGS

10

101

10110

10110101

1011010110110
101101011011010110101
1011010110110101101011011010110110

Another way of looking at this sequence development is to take the third
generation (101) and add to it the previous generation (10), to get 101 19 To get
the next generation, we take the previous one, 101 10, and add to it its
predecessor, to get 10110 101. In general terms, to get the nth generation, we
take the (n — 1) generation and add to it the (n — 2) generation. This sequence is
often called the golden string.

By now you may wonder what this has to do with the golden ratio. Consider
the function ¥ =f(x) = ¢x.

Yi s

9 /1

8

=

= [y

o
—
h
(]
N
tn
)
=Y

Fi £
Figure 5-67

Let us graph this equation (y = ®x), as shown in figure 5-67. The graph is a



straight line containing no lattice point. Let us indicate each point that this line
crosses a horizontal line with a 1, and each time it crosses a vertical line with a ¢
Beginning after the origin, we will list the numbers along the line, as shown in
figure 5-67. We then get the following: 10110101101101, which is the golden
sequence. The graph of the golden ratio was able to generate this sequence.

The procedure for creating the golden string may remind you of the Fibonacci
numbers. Consider the table in figure 5-68.

Golden Strings Number of s and 1s
1 l

10 [+1

101 1+2

10110 243

10110101 3+5

1011010110110 5+8
101101011011010110101 8+13
1011010110110101101011011010110110 13+21

Ei i 4
igure 5-68

Counting the number of Os and 1s reminds us of the Fibonacci numbers.
Furthermore, if we take the ratio of the numbers of Os to the number of 1s, we
get the golden ratio—again!

Another strange aspect of the golden string can be seen with the following
instructions. One might say that the sequence is self-reproducing. To

demonstrate  this, we will begin with the golden string:
1011010110110101101011011010110110 ... .
We shall focus on all the 10s in the string as underlined below:

0110110110110 1 101101 10110110 110110110 ....

[
|2
[+
[+

1g|

-
Next, we will replace all the 2s with a 1 and all the 1s with a 0, which gives us
0

101 110101 1101 110101 1 010101...,
or when written together: 10110101101101011010101... .

Yes, this is our original string self-generated as we claimed at the outset.
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A nice recreational activity in arithmetic is to see if one can represent the natural
numbers using only four 4s. This sort of exercise is shown below for the first
twenty natural numbers and zero.

4-4
g

4+4 ~Jaa
4+4 a4’

44 _4-4 o
=k 4

3=4+4+4=\/:1+\/E—i.
4 4
4—4 V4-4-4

4="""4=
4

0=

4
4-4+4
7

4+4 44

6= 4_———+4
4

—4=ﬁ+4+%.

4(4+4)

B

8=4-4—4-4=

9=%§—JZ=4JE+§.

10=4+4+4—-/4.

4 4
n=%+ﬁ]

14=4-4—4+J4=4+4+4+/4.



[§="0

44 4_«/5+J5+\/5
2 :

4.4.4

=i 444 4="""""
4
[T
4
44
[8 =i piiifA,
7
19=4+4‘E+4.

20=4-4+~/4 +-/4.

By now, one would anticipate that this must also be possible for many other
numbers. You might want to continue this list. However, when we come to our
main subject here, the golden ratio, we would not expect to be able to represent
this number, since it is not a natural number. Well, again the golden ratio
surprises us with its ubiquity. Here is the golden ratio expressed using four 4s

Va+ a—4
(4!, or 4 factorial, is definedas 1 -2 - 3 - 4): 4 .
Yes, this is precise!
You can show that this is equivalent to
1++/5 =3
as follows:
Va+a—4 Ja+V24—4 Ja+as5 24205 1445
4 4 4 4 2 -

In this chapter, we have tried to demonstrate how the appearances of the golden
ratio can seem to be practically limitless. Often rather unrelated situations have
the golden ratio embedded. We hope that the reader will be motivated to search
for other hidden golden ratio occurrences.

LAST, BUT NOT LEAST...



In the mathematical community, i lovers celebrate March 14 as n-day, since its
short form is 3-14. And at 1:59, they will be jubilant! (Can you guess why?).
Fittingly, we should now celebrate ¢ on January 6, whereupon ¢ enthusiasts will
be particularly jubilant at 18:03 o'clock!



Chapter 6

The Golden Ratio
in the Plant Kingdoml

The spiral patterns of the sunflower, fir cone, and the pineapple have fascinated
plant biologists for hundreds of years, and the attempt to account for their
appearance is still an exciting field of research today (called phyllotaxis). These
considerations provide excellent examples of how simple mathematical
description and modeling can contribute to our understanding of complex plant
growth processes. One of the more interesting examples is the informative
application of Fibonacci numbers to analyze certain repetitive or regular patterns
in nature, especially in the plant kingdom.

When one considers the enormous variety of growth forms in the plant
kingdom, it seems even more astounding that the Fibonacci numbers are found
so abundantly. For example, if we count the number of clockwise or
counterclockwise spirals in a sunflower or in a pineapple, then usually we will
find two successive Fibonacci numbers, F,. This is true even in instances where

we would hardly expect them, such as in the flower heads (capitulum) of
dandelions. After all the sailing dandelion seeds have been dispersed, a
Fibonacci spiral pattern (fig. 6-1d and 6-2a) with 34 clockwise and 55
counterclockwise spirals can be seen. In the case of the crassulacean succulent
(Aeonium tabuliforme) (fig. 6-3), 5 clockwise and 8 counterclockwise spirals can
be clearly observed.




Figure 6-1d
Growth phases of the dandelion flower head (Photos: Mascolus).

Figure 6-2a



Figure 6-2c
Fibonacci spiral patterns:

(a) Dandelion capitulum (b) Marguerite (daisy) (c) Pineapple
flower head scale pattern

In the following discussion, we will attempt to establish a universal law to
explain the frequent occurrences of the Fibonacci numbers in the plant kingdom.

Figure 6-3. Fibonacci spiral pattern with five clockwise and eight counter -
clockwise spirals of the crassulacean succulent (Aeonium tabuliforme).
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FIBONACCI NUMBERS AND THE GOLDEN ANGLE

The Fibonacci numbers have a close connection to the golden angle, which is
defined as follows (see p. 136): The golden angle is attained by dividing the
circumference of a circle in the golden ratio. In this way, two angles are created
that are here defined, respectively, as the large and small golden angles as

360° _ L o 360° _ 5 N_1278 o
follows: 6 = 2224 .. and360 —Tp =360°(2-9)=1375... (fig. 6-4).

Figure 6-4. The golden angle.

An approximation of the golden angle is often observed in nature as the angle
between successive leaves or the divergence angle (fig. 6-5). The golden angle is
already apparent early in the history of plant development.



Figure 6-5. The golden angle (137.5...°) as approximation
of the divergence angle.

The association between the golden angle and the Fibonacci numbers was
empirically proven for the first time in 1830 by the German geologist, botanist,

and poet Karl Friedrich Schimper (1803-1867) (see fig. 6-6).

Divergence (°) Plant
%* 360 = 180 lime
%-360 =120 beech
2
3 360 =144 oak
3
= 360 =135 pear
5
E- 360 =138.4... | almond

Figure 6-6. The divergence angle of selected plants’

-
i I,

We established earlier (chap. 3) that Foi 0
Therefore, the sequence of fractions of the divergence angle,



has the limiting value

F F I I I

I — Ul

s — =—
E., F=+F. |+h 1+¢ ¢

M

=2-¢.

L

This equates exactly to the golden angle:

J5+1

2

-+360%=157.507...%,

(2—¢)-360°=] 2~

In 1979, the central role that the golden angle played in phyllotaxis was
impressively illustrated through computer simulations by H. Vogel in his paper
“A Better Way to Construct the Sunflower Head.”* Vogel made two model
assumptions about the distribution of the florets in the sunflower head (i.e., in
the capitulum):

1. The divergence angle is constant.
2. The packing is compact.

The constancy of the divergence angle means that successive establishments are
developed with the constant angle a; also the compact packing requires that the
increase in the area of the capitulum is the same as the area of the newly

established growth.2 With the computer model, the influence of the divergence
angle o = A - 360° can be assessed for various lambda (A) parameters (fig. 6-7).

Figure 6-7. The three spiral patterns were generated with the Vogel model for various A
values:



Left }F% =038, Middle A= 2-¢=0.38 1966, and Right A= 0.3825.

The connection between the divergence angle of the real number A and the
number of visible spirals or contact parastichies is determined by the
development of the continued fraction (see the appendix).

The convergent denominators of the golden angle are precisely the Fibonacci
numbers, which explains the above occurrences and coincides with the number
of spirals in the same rotational direction.

Figure 6-8a

Figure 6-8b

Figure 6-8Bc

Figure 6-8d



Spiral patterns generated with the Vogel model for the golden angle. The Fibonacci spiral pattern has been
made visible through coloring every fifth, eighth, thirteenth, and twenty-first spiral.

PARASTICHY NUMBERS, DIVERGENCE ANGLE,
AND GROWTH

It is an empirical fact that during plant development, the growth h (the vertical
interval between leaf nodes) lessens. This can be verified by taking a walk
through the garden and inspecting the plants (fig. 6-9).

i
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Figure 6-9. Reduction in growth between leaf nodes during plant development.

This is the source of the alternation in the spiral pattern and can be explained
more easily as a cylindrical lattice. For this purpose, we observe the points of a
helix on a cylinder surface with cylinder radius R, growth h, and divergence
angle a = 360° - A (A is the determinant divergence for this angle). If a cylinder
lattice is normalized to C = 2 - R = 1 and rolled out into a plane, we obtain a
plane point lattice, which is explicitly characterized by (h, A) (fig. 6-10).% The
biological sequence of new growth adheres to the natural numbers, whereby the
youngest is depicted as number 1 and the second youngest with the number 2,
and so on. From a geometric viewpoint, it is not the age of the growth that is



important but rather its relation to neighboring growth.

7 JF\
4 .

e

Figure 6-10. If we imagine the cylinder as a roller and roll it out in the plane, we
create a point lattice, which is defined by assigning the growth rate h (the vertical
interval between points) and the divergent angle o =360°+ A, [t is sufficient to
observe the foundational strip T between —0.5 and 0.5, because the whole lattice is
created through displacement of T.

For the lattice in Figure 6-11, the points 2 and 3 are the immediate neighbors of
the origin. This creates 2 counter clockwise-rotating contact parastichies on the
cylinder and 3 clockwise-rotating contact parastichies, respectively. It is said that
the parastichies pair (2, 3) belongs to the lattice. Through a reduction in growth
of the interval, point 5 replaces point 2 as the second neighbor of the origin. That
is to say, the parastichies pair changes the lattice from (2, 3) to (5, 3).

d

05 0 05

Figure 6-1 1. The cylinder lattices above were generated with a divergence
A =2—¢. For the left lattice (a) a growth of h=0.05 and for the right lattice
a growth of h=0.02 was chosen.

Although a point lattice can be constructed for every parameter pair (h, A), the
lattices that have their origin in biological growth processes are often subject to



severe constraints. Because the phyllotactic lattice is often idealized as a
tangential circle, these lattices are rhombic (fig. 6-10b), which means that both
generating vectors are of the same length. These considerations are fundamental
for the so-called sphere packing model that the Dutch botanist G. van Iterson

(1878-1972) introduced in his doctoral thesis in 1907.Z This allows us to explain
the interrelationship between the golden angle and the Fibonacci numbers in the
case of an ideal (i.e., generated with fixed divergence angle) and of consistently
changing divergence angles, according to the Van Iterson diagram (see fig. 6-
14).

CAUSAL MODEL OF PHYLLOTAXIS

One explanation that has been proposed for the spiral pattern, as a functional
principle or morphological adaptation, is that it allows for optimal light

exploitation, which enables maximal photosynthetic activity.2 However, this can
be disregarded because, on the one hand, these patterns are also found in
saltwater algae, which are kept in motion by the continuous water currents and
therefore have no specific advantage in being arranged according to the golden
angle; and on the other hand, these patterns are also found in scale insects
(Placentalia) and seeds, which obviously have nothing to do with light

exploitation.? Furthermore, it is difficult to separate cause from effect.

The idea of a black box in which over millions of years evolution has written
the code for the angles of the leaf primordia is also not very helpful in explaining
the functional value of this universal phenomenon.

The following model, on the other hand, ensures that the generation of the
Fibonacci spiral pattern is solely a result of biologically plausible principles.

The mathematical modeling of the spiral phyllotaxis must at least replicate the
following two biological processes: the processes in the growing tip that lead to
the generation of the primordia in specific locations and the physical interactions
of the primordia during their alignment on the hypothecium.



Figure 6-12. Spiral inception of numerous individual
stamen primordia on a conical floral apex.
(REM-Foto from Erbar & Leins. Reprinted with
permission from Professor Erbar.)

The shoot apical meristem is characterized by a union of cells with a high cell
density and cell division rate. The apical ring is situated at the base of the apical
meristem, which is where new biological primordia for leaves or flowers are
initiated. These can be seen as small balls in figure 6-12. The location of the
primordia initiation is decisively regulated by the plant hormone auxin (Greek
auxein = growth, enrichment).

E. J. H. Corner stated, “The spiral pattern of the apical meristem...is one of

the biggest wonders of the botanic.”’2 A simple causal model for this wonder,

which was proposed by J. N. RidleyLl after preliminary work from I. Adler,12 is
based on the contact-pressure hypothesis of the Swiss botanist Simon

Schwendener (1829-1919).13 Mechanical forces were first recognized by the

German mathematician Johannes Kepler (1571-1630)4 as the main factor
leading to specific organic forms and patterns. In this way, he explained that the
rhombic form of pomegranate seeds is due to the pressure contact on the seeds
during growth. As a result of these pressure forces, tightly packed rhombic seed
structures are generated. Hubert Airy (1838-1903) conjectured in 1873 that in an
embryonic state, the plant has a large advantage from the compact packing
condition: “In the bud we see at once, what must be the use of leaf-order. It is
the economy of space, whereby the bud is entire to itself and presents the least

surface to outward danger and vicissitudes of temperature.”12



The compact packing of the leaf primordia makes the hypothesis of pressure-
force related forms in the early development stages plausible. Ridley's
simulation of the contact force model contains the following steps:

Ridley Algorithm

1. Generation of a new primordium
2. Interaction of the primordia

3. Expansion of the primordia
The understanding of the position regulation of the primordia is of particular

significance. It is generally acceptedi® today that historically, after 1868, the
position of the primordia initiation can be empirically explained using the
hypothesis presented by the German botanist Wilhelm Hofmeister (1824-1877):
A new primordium is initiated in the position of the apex ring, which has the

largest interval of all already-existing primordia.l”
Simulations of an improved Ridley model have shown that for large parameter
areas, the spiral pattern is generated exactly as the one most often seen in

nature.18 For the sunflower, this is with a frequency of 82 percent Fibonacci

spirals and 14 percent Lucas spirals.2
Similar results were obtained by the French physicists Stephane Douady and

Yves Couder in their famous experiment from 1992.22 Small ferromagnetic balls
were dripped into an oil pool while continuously lowering the frequency of
additions, and they were then slowly drawn to the outside by an external magnet
field. A regular Fibonacci spiral pattern was generated. Since then, this pattern
building has also been observed in many other nonbiological systems.

Figure 6-13. Spiral patterns generated with the Ridley algorithm (a) Fibonacci spirals and
(b) Lucas spirals.



In 2002, Pau Atela and his colleagues, Christophe Gole and Scott Hotton,
constructed a dynamic system that proved that the fix points of this system make
up exactly the stabile lattice, which in (d, h)-parameter space are given by a

truncated Van Iterson diagram (fig. 6-13).2! Through the influence of the contact
pressure, the growth of a phyllotactic pattern during decreasing elongation can
be described by a downward zigzag path. The path that starts earliest, and has
the largest sphere of influence, is the Fibonacci path (1, 1)- (1, 2)—- (2, 3)—...
—(m, n)—(n, m + n)— ..., which becomes closer and closer to the straight line x
=2 — ¢, Therefore, it is no wonder that the Fibonacci numbers are so often found
in the plant kingdom. The golden ratio, on the other hand, is a mathematical
construction that works in nature as is impressively shown by the Van Iterson

diagram (fig. 6-14).

0.25

Figure 6-14. The truncated van Iterson diagram (Grafic Neukirchner).

As we have seen, the golden section with its partner the Fibonacci numbers is
embedded in nature. You might want to search for the many other manifestations
of these mathematical aspects in nature.



Chapter 7

The Golden Ratio
and Fractalsl

When mentioning the golden ratio, perhaps the geometrical figures that most
promptly come to mind are regular pentagons, because of the relationship
between their sides and diagonals. Or maybe even the famous golden rectangle.
But another realm in which the golden ratio plays an important role is in the
construction of some fractals.

One of the easiest ways to understand the nature of fractals is to observe trees.
The way in which each branch of a tree bifurcates into smaller branches in order
to create a fork constitutes the basic idea we try to replicate when creating
fractals: that is, repeatedly adding to a geometric figure reduced copies of itself,
or in some cases, replacing parts of the figure by those reduced copies, according
to a determined rule.

We can imitate a tree, or create a fractal tree, according to a very simple
geometric rule: We start with a trunk (a segment), and at one of its endpoints we
create a bifurcation by placing two reduced copies of the trunk. At the other
endpoint of the two new stems, we will repeat the rule and create other
bifurcations, as shown on figure 7-1.

Yy

The factor of reduction and the angle at which the branches will be placed are a
matter of choice.
Trees clearly show the idea of self-similarity, one of the most remarkable

Figure 7-1



characteristics of fractals: An object is made up of several smaller, perhaps
overlapping, copies of itself.

As we repeat that geometric rule more and more times, and the number of
copies in the figure increases, making it more “crowded,” it is often the case that
some of those parts will overlap. For example, compare the trees in figures 7-2
and 7-3. Both were obtained by fourteen repetitions of the bifurcation procedure

4
described above. For the one in figure 7-2 we used a reduction factor of 7, while

for figure 7-3 we used a reduction factor of 7. We can see that with the reduction
of the branches in figure 7-2, the resulting tree has plenty of room for more
branches without having them overlap. This is not true of the tree in figure 7-3.

The factor 7 does not reduce the branches enough to provide room for growth
without overlap.

Figure 7-2. Tree obtained by fourteen iterations of a |120°-bifurcation
with reduction factor %.



Figure 7-3. Tree obtained by fourteen iterations of a | 20°-bifurcation
with reduction factor %

A natural question that one may then ask when constructing such fractals is,
What choices of angles or reduction factors will yield overlapping figures, and
which ones will not?

Amazingly, the pursuit of an answer to that question will lead us to the now-
familiar golden ratio.

Let us look more closely to the bifurcation procedure illustrated by figure 7-1.
We start out with a segment k, whose length we will stipulate to be one unit and
will label [,. We then branch that segment into two other segments, which are

reduced copies of k. The factor of reduction is our choice, and we will call it f. In
order to have branches spread evenly around the bifurcation point, we will use
angles measuring 120° between the branches (fig. 7-4).



Figure 7-4. The first stage of the tree fractal.

We will label /; the length of the new segments, since these were obtained by
one iteration of the copying procedure. The two new segments have length:

Li=lyf=1-f=f.

When we iterate the bifurcation procedure again, we will have four new
segments, of length

=ty =r=i"
A third iteration will produce segments of length I; = f3, and so forth. In general,

the segment generated by the nth iteration will have length f" (see fig. 7-5).



Figure 7-5. If we start the fractal tree with a segment of length [,=1 and use a
reduction factor f, the segment generated by the nth iteration will have length 7

As we noted earlier, whether or not the branches overlap will depend on our

4
choice of f. We have seen from figures 7-2 and 7-3 that when f equals 7, or
approximately 0.57, no overlapping occurs, but if we choose f to be 7, or

approximately 0.71, the branches of the tree will overlap. This leads us to

conjecture that there should be a real number between i and 7 that will make the
branches of the tree lightly touch, with no overlaps, when used as a reduction
factor. Let us try to find such a number.

We want the zigzag made by the segments of lengths £, f*, f, f5,...to fit
exactly between the two parallel axes o and p shown as dashed lines in figure 7-
6.

What is the distance between those two parallel lines?

We can see from figure 7-7 that it will be the projection of the segment of
length f onto line r, that is, f sin 60°.

If we also “flatten” the zigzag horizontally, we get the equation we want to be

true in order to have branches touching but not overlapping:



sin 60° + f*sin 60° + f>sin 60° + f¥sin 60° +...= fsin 60°.

Figure 7-6
We can simplify this equation by dividing both its sides by sin 60°:
Prr+pP+f+.=f.

The left side of this equation can be rewritten as: f> (1 + f + f> + f+...).

L.
The summation in parentheses is the geometric series, which converges to -/

for values of f between 0 and 1, which is the case of our reduction factor, since

I~

4 5
by figures 7-2 and 7-3 we know that it must be between the values 7 and 7.

3|
We arrive then at the equation =k
Can we find values of f that satisfy this equation? So far the equation does not
look very familiar, but we can simplify it further. If we divide both sides by f, we
get



L.

g 1
Fic7

Finally, let's multiply both sides by 1 — f:
fF=1-f.

This equation looks more familiar. It is the quadratic equation f> + f— 1 = 0,
whose roots are

P M SR il SRS e B 5
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that is, the reciprocal and the opposite of the golden ratio.



Figure 7-7

And there we find our amazing golden number again as the optimal solution for
our aesthetic demand. A fractal tree constructed with the reciprocal of the golden
ratio as the reduction factor will have branches covering up as much space as
they can, and branches getting as close to each other as they can, until they
touch, though not covering other branches.

Other beautiful fractals can be obtained by using the golden ratio in one way
or another. The square fractal, for example, is constructed by starting with a
square and adding reduced copies of it at each? corner.2 At each subsequent step,
reduced copies are added to each one of the three free corners of the new
squares. Figure 7-8 shows such a fractal in the ninth stage of its construction.



4
The reduction factor used is a 9 linear reduction. That is, the side of the squares

4
created at a particular stage measure 9 of the length of the side of squares at the
preceding stage.

Figure 7-8. Square fractal, nine stages, reduction factor of 4.

If we use the golden ratio as the ratio between the sides of squares in the square
fractal, the resulting picture is a perfectly crafted tapestry. The squares snuggle
perfectly, and as the iterations progress we can see many golden rectangles being
delineated in the resulting picture (fig. 7-9). As in the case with the tree fractal,
the golden ratio is the ratio we find if we want optimal fit in the square fractal.
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Figure 7-9. Golden square fractal, nine stages, reduction factor is % =061803.

Another way in which we can combine the golden ratio and fractals is by
deliberately using in our constructions geometric figures that we know entail the
golden ratio in their measurements. Three such figures are the regular pentagon,
the isosceles triangle with base angles measuring 36°, and the isosceles triangle
with base angles measuring 72°—which we call, respectively, the obtuse and the
acute golden triangles (see chap. 4). We can also use the fact that we can dissect
each of these figures into a combination of other regular pentagons and golden
triangles, as shown in figures 7-10 through 7-13.
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Figure 7-10

A regular pentagon can be dissected into two obtuse golden triangles and one
acute golden triangle as shown in figure 7-10.

/\_. : :

E D

Figure 7-11

An obtuse golden triangle (fig. 7-11) can be dissected into one regular pentagon
and two acute golden triangles. Notice that the points D and E are found by
marking off a length equal to that of AB on segment BC from points B and C,
respectively.

PN

Figure 7-12

Obtuse golden triangles can also be dissected into three other golden triangles,
two obtuse and one acute, as shown in figure 7-12.



B c
Figure 7-13

An acute golden triangle (fig. 7-13) can be dissected into one regular pentagon,
three acute golden triangles, and one obtuse golden triangle. Notice that the
points Q and S are found by bisecting the 72° angles ABC and BCA, respectively.

We can choose one of these figures to start our construction, then decide on a
way to partition it, one that can be iterated over and over. As a first example,
let's start with an obtuse golden triangle and the dissection shown in figure 7-12.

We can stipulate that our rule will be to divide the obtuse golden triangle in
that manner and subsequently to remove the acute golden triangle in the middle.
Each iteration will consist of applying the same rule to every obtuse golden
triangle at any stage of the construction. Figure 7-14 shows the result of five
iterations of this rule.

A l \ J ‘A J\JAD\ Aﬁf: Ltm ...ﬁﬁﬁ?nm

Figure 7-14

This construction fits nicely into a pentagonal shape if we add to it rotated copies
of itself, such as in figure 7-15.



Figure 7-15

In figure 7-16, we generate a fractal from an acute golden triangle. Careful
inspection will show the connection between the buildup from figure 7-16 to

figure 7-17.

Figure 7-16



Figure 7-17

The next fractal we will consider is built around a pentagon. The process of
construction is detailed in figure 7-18.

o-9-T

Figure 7-18

In figure 7-19, we have this process iterated three times. Notice that in the fourth
stage of the construction (third iteration) some pentagons start overlapping
others.

In figure 7-20 we see the results of the first five iterations. Once again we
rotated the figure around a point to create symmetry.



|

Figure 7-19

Figure 7-20

Another fractal involving pentagons—and consequently the golden ratio—is the
pentaflake. This construction is said to have been first thought of by German
artist Albrecht Durer (1471-1528). We start with a regular pentagon. We
construct its diagonals and find their points of intersection. Those points will be
the vertices of a new regular pentagon (fig. 7-21). To construct the pentaflake,
we use auxiliary circles to mark off two points on each side of our original
pentagon. Figure 7-21 shows this procedure for one of the sides. Figure 7-22
shows the complete construction. This construction will be used as the generator
of the fractal. At each stage of the fractal's construction, we will apply this rule



to every pentagon at that stage. Figure 7-23 shows the first three iterations in the
construction of the pentaflake.
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Figure 7-21. The diagonals of regular pentagon ABCDE form a new regular
pentagon, FGHI.
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Figure 7-22. The generative procedure for the construction of the pentaflake.
At each stage this procedure will be applied to every pentagon at that stage.

Figure 7-23. The results of the first three iterations in the construction of the
pentaflake.

How can we be sure that these constructions are fractals? Besides the presence
of self-similarity, one thing that characterizes fractals is the fact that their
dimension can be an irrational number.

This last sentence may not make sense unless we revise our concept of
dimension. There are many ways in which dimension of a geometric object can



be defined. What most people have heard about dimension is that a point has
dimension zero, a line has dimension one, plane figures have dimension two, and
solids are three-dimensional. With only that in mind, it may be impossible to
conceive of an object having dimension that is an irrational number. Therefore,
to understand this affirmation, we will briefly extend our concept of dimension.

The concept of dimension we will use is also called similarity dimension. It is
calculated by observing what happens to a figure once we dilate it by a linear
factor f. We will try to understand the idea by examining objects whose
dimensions we already know: a segment, a two-dimensional figure, and a three-
dimensional figure. Then, once we figure out the process that originates those
numbers, we will use it to calculate dimensions of fractal objects.

Let's start with a line segment of length I. We will then make a dilated copy of
it. We can choose the dilation factor f to be any number, for example, 2. In this
case, the copy will have length 21 (fig. 7-24).

The key thing now to calculate the dimension is to determine how many self-
similar copies of the original figure can be found in the dilated figure.
Obviously, in this case, we have two copies of the original segment in the dilated
segment.?

- - :> 5 . o

Figure 7-24. Doubling the length of a segment yields two copies of the original
segment.

We will now see what happens if we dilate a square by the same factor f. One
important thing to keep in mind is that f is a factor of linear dilation. That is, if
we choose it to be 2, we are going to double the lengths for the new figure, not
the areas. In this case, that means we will double the length of the side of the

square (fig. 7-25).



Figure 7-25. Dilating a square by a linear factor of 2 gives us four copies of the
original square.

We can see that a linear dilation of 2 will yield four copies of the original figure,
in this case.

Finally, let's examine what happens once we dilate a cube, which we assume
to have three dimensions, by a linear factor f.

Figure 7-26 shows that when we double the side of a cube, the new cube has

eight copies of the original cube in itself.

v

Figure 7-26. A cube with the side double the length of that of the side of the
original cube will entail eight copies of the original in itself.

The results we obtained are summarized in a table (fig. 7-27).



- _Frgure | Known dimension | Linear factor used | Number of copies
for dilation () | obtained
segment - F 2 . 5
"'-square | 2 i ) 4
T - % S 5 e

Figure 7-27

From this table you can notice the number of copies obtained can be rewritten as
a power of f, and the exponents are precisely the dimension we commonly have
heard of: 1 in the case of the segment, 2 for the square, and 3 for the cube (fig. 7-
28).

‘Figure Linear factor used Number of copies
for dilation (f) obtained
segment | 2 2!
- square 2 2’
cube E -
Figure 7-28 |

So if we define dimension to be the exponent obtained when we write the
number of self-similar copies as a power of the linear dilation factor, we get
results that match our previous, informal, notion of dimension. This is just a way
of simplifying a more formal definition of dimension, known as box-counting
dimension, which we will not cover here. But notice that this simplification can
only be used in self-similar figures.

Let us write these observations algebraically. We will use the following
notation:

Dimension = d
Number of self-similar copies = N
Linear dilation factor = f

Using the variables above, we can write the following equation: N = f.

Let us use this definition of dimension to calculate the dimension of the fractal in
figure 7-14.
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Figure 7-29

Figure 7-29 shows that a linear dilation of ¢ (gives us two copies of the original
figure. This can be seen if we notice that triangle ABC in the figure is a golden
triangle, so its sides AB and AC are to each other in the golden ratio.

Using our formula for dimension we have that this fractal has dimension:

N=§
2=¢"

Since our unknown d is the exponent, to find its value we need to apply the
logarithmic function to both sides of the equation:

log2 =log(¢").
Using a known property of logarithms, the equation becomes
log2=d log¢.
The value of d is obtained if we divide both sides of the equation by log ¢,

"
_ log2 _ 0.3010 T
logg 0.2090

So d is irrational. Having an irrational dimension is a common trait among
fractals.

The number also lies between 1 and 2 (it is approximately equal to 1.44).
What does it mean to have dimension greater than 1 but less than 2? A
dimension equal to 1 is characteristic of segments, objects that have only length.
Two-dimensional objects, on the other hand, have an area. A dimension of 1.44
seems to suggest that our fractal has more than just length, but not quite an area.

One might at this point argue that the objects in figure 7-29 have an area. But
we have to remember that those illustrations represent just initial stages in the
construction of the fractal. The actual fractal is the set of points that would be
obtained after an infinite number of iterations of the generative procedure.

But since we can calculate the area at a specific stage, let us calculate a few of
those and infer what the area of the fractal would be by examining the change
pattern we will find.



Let us also calculate the perimeter of the fractal, that is, the length of its
boundary.
Figure 7-30 shows the calculations for the first ten stages of the fractal.

Length  Length
of short oflong Number Perimeter Area of
side of side of of of each each Total Total

LLd LLd

1 [.6180 3.6180 0.4755 3.6180 0.4755

0 1

1 (1.6180 1 2 2.2361 01816 44721 00,3633
2 0.3820 0.6180 4 1.3820 0.0694 5.5279 0.2775
3 (.2361] 0.3820 8 0.8541 0.0265 6.8328 0.2120
4 0.1459 0.2361 16 0.5279 0.0101 8.4458 0.1620
= 0,0902 0.1459 32 0.3262 0.0039 10,4396 0.1237
6 0.0557 0.0902 e 0.2016 0.0015 12.9041 0.05945
7 (1.0344 0.0557 128 0.1246 0.0006 15.9503 00722
8 0.0213 0.0344 256 0.0770 0.0002 19.7157 0.0552
9 0.0132 00213 512 (L0476 (L0001 24,3699 0.0421

Figure 7-30

The table was constructed cognizant of the fact that if we start with an obtuse
golden triangle in which the shorter side measures one unit length, the length of
the longer side will be equal to ¢. At each subsequent stage, the lengths of the

sides will be reduced by a factor of 7;"*. The area of each triangle was calculated
with the help of the Pythagorean theorem and the formula for area of a triangle.
The total perimeter and total area at a particular stage are the sums of the
perimeters and areas of all triangles at that stage, respectively.

The graphs in figures 7-31 and 7-32 help us see that while the perimeter of the
fractal increases at each stage, the area decreases. In the long run, the fractal will
have an infinite perimeter but an area equal to zero. No wonder it has dimension
greater than 1, but less than 2. As we suspected, the dimension of 1.44 means
that our fractal has more than just length (dimension 1), but not quite an area
(dimension 2).
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Figure 7-32

What would the dimension of the pentaflake be? We see that at each stage of its
construction, the pentaflake gets more and more “holes.” This suggests that its
dimension is more than 1 and less than 2. Let us see if calculations confirm this
conjecture.

Figure 7-33 shows that when we arrange six copies of a pentagon to form a
pentaflakelike figure, the corresponding linear factor of dilation is 1 + ¢.

Calculating the dimension the same way we did for the previous fractal, we will
log6

find that the dimension of the pentaflake is log(l+¢); which is an irrational
number approximately equal to 1.86.
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Figure 7-33. If AB=1,AD=1+ AB=1, AD =1 +%+1:1+¢.

Does the fact that the golden ratio was employed in the construction of the
fractals in this chapter make them more visually appealing than other fractals?
That may not be the case. But the study of the mathematical relationships in
these fractals and the fact that the golden ratio plays such a strong role in them
can certainly generate awe.



Concluding Thoughts

As we have reached the end of our journey, you must be thoroughly convinced
that the golden section is a truly extraordinary phenomenon in mathematics. It
appears both by design and by chance. Although we have to take the clues from
history, and as best our modern minds can reconstruct the pieces, we can see that
this relationship has permeated all aspects of society: structurally, aesthetically,
biologically, and mathematically, which has given us an enormous range of
areas to explore. The ratio's history is fascinating, and we traced it from ancient
times to its more recent manifestations. Were the ancients aware of this ratio in
all cases, or are we speculating that they did to some degree? Whatever the case
may be, it is truly delightful to view its past permutations in our search for this
ratio. You might well find other situations where this ratio emerges. The
possibilities are practically boundless.

By now you know how to construct the ratio by partitioning a line segment,
constructing a golden rectangle, a golden triangle, and a regular pentagon—all of
which exhibit the golden section clearly. However, we have also examined other
geometric configurations that in some fashion exhibited the golden section—
many of which were quite unexpected appearances. Yet with each of these
unexpected sightings of the golden section, there was usually an introduction to
what for many were some new geometric relationships beyond the golden
section. It is our hope that this type of exploration enriches one's encounter with
geometry—something sorely lacking from traditional high school geometry.

The numerical value of the golden ratio is fascinating largely because of its
ubiquity. Perhaps its most well-known connection to another structure in
mathematics is its connection to the Fibonacci numbers—that is, the ratio of two
consecutive Fibonacci numbers approaches either the golden ratio or its
reciprocal, depending on the order of the ratio. This brings us to the most
unusual relationship of the numerical value of the golden ratio, namely it is the

only number that differs from its reciprocal by 1, that is, ¢=3+1 Thisled us to a
value of ¢ that is irrational and that in turn has opened up yet another area of
further investigation.

Aside from its appearance in architecture and art, the golden section may be
found throughout the plant kingdom. You will quite likely now be looking for
other golden ratio specimens in the biological world. We just provided you an



open door from which to peek at the garden of possibilities in this arena.

The closing chapter, showing the golden section in the field of fractals, can be
seen as both mathematical and artistic. This rounds out our appreciation for this
most famous ratio in mathematics. Since it relates in some form to almost
everything in the field of mathematics, it is truly a ratio that has earned the title
of golden. So now go for it, and expand on your introduction to the golden ratio!



Appendix

Proofs and Justifications of
Selected Relationships

FOR CHAPTER 1:



Derivation of the Quadratic Formula

The quadratic equation, ax? + bx + ¢ = 0 (where a > 0), can be solved for x in the
following way: ax? + bx + ¢ = 0.

¥ A Ex +£=0.
i id
2, b B b c
xXt+—x(+——-—)+—=0.
a ( 4q° 4;.:') a
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" [Add 44’ a to both sides of the equation.]
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2a 4a° 44’ 4a’ [Take the square root of both sides.]
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FOR CHAPTER 3:

Proof of ¢"=F.¢+F., withn>1 and Fy,=0.

We begin by showing that the statement to be proved by mathematical induction
is true for n = 1.

Yes, it holds true: ¢'=Fp+F=1-¢+0=4¢.

It is also true for the cases of n = 2, 3, 4, 5, as shown below:

P=¢+l=1-¢+1,

P=9p’=p(p+ D=’ +Pp=¢+1+9=20+1,

¢'=pP =207+ p=20+2+p=3¢+2,

qﬁj:¢¢4:¢=(3¢+2_}=3¢3+2¢r:3¢+3+2¢=5:}5-3.

What now remains is that we accept its truth for k: ¢"=F¢+F_,. and must
show it is then also true for k + 1, namely ¢"*' =Fy,,¢+F,.

By multiplying the first equation by ¢, we get: ¢ =F¢"+F,_¢

Since ¢*=9+L we have



¢k+l:Fk¢2+Fk—J¢:Fk(¢+1)+ﬁ—l¢:(Fk+‘ﬁ-—J)‘P+ﬁ:Fk+J¢+F’ which we were
required to show.



On Continued Fractions

A continued fraction is a fraction in which the denominator contains a mixed
number (a whole number and a proper fraction). We can take an improper

13 6146
fraction such as 7 and express it as a mixed number: 17=1+2 without changing
6 1
I+=—=1+—,
7
the value, we could then write this as 6

which in turn could be written (again without any value change) as

1+ : 1
1+—
6

This is a continued fraction. We could have continued this process, but when we

1
reach a unit fraction (as in this case, the unit fraction is &), we are essentially
finished.
So that you can get a better grasp of this technique, we will create another
12

continued fraction. We will convert 7 to a continued fraction form. Notice that

at each stage, when a proper fraction is reached, take the reciprocal of the
1
A0 =3
a

reciprocal (e.g., change 2
as we will do in the example that follows), which does not change its value:

E=1+E=1+ l =1+ 1 =1+ - =1+—1
fi 7 7 2 1 1

= 1+— 1+§ 1+ I

5 3 2 m

2 4

If we break up a continued fraction into its component parts (called

convergents),! we get closer and closer to the actual value of the original
fraction.
12
First convergent of 7: L.
12
Second convergent of 7: e



12 o o _sa 2 o205
Third convergent of 7: +l+1 T35 3
2
o L 12
12 17
Fourth convergent of 7: b g 1
2

The above examples are all finite continued fractions, which are equivalent to
rational numbers (those that can be expressed as simple fractions). It would then
follow that an irrational number would result in an infinite continued fraction.
That is exactly the case. A simple example of an infinite continued fraction is
that of v2. Although we show it here, we will actually generate it just a bit
further on.

2=1+ ]

2+

2+

2+

2+

2+

2+1

2+...

We have a short way to write a long (in this case infinitely long!) continued
fraction: [1; 2, 2, 2, 2, 2, 2, 2,...], or when there are these endless repetitions, we
can even write it in a shorter form as [1; 2], where the bar over the 2 indicates
that the 2 repeats endlessly.

In general, we can represent a finite continued fraction as

QD'P'

1
Ay +—

by

where q; are real numbers and a; # 0 for i > 0. We can write this in a shorter



fashion as [ay; ay, a», as,..., a,_4, a,], but as an infinite continued fraction as [ag;
dq, o, Az,y..., dp,...].

As we said before, we will generate a continued fraction equal to 2.

Begin with the identity vV2+2=+2+2.

Factor the left side and split the 2 on the right side:

N2 (142 =14+/2 +1. I

_ V2=1+——==[1; ,4/2]
Divide both sides by 1 + /2 to get 1+~/2
V2 =14—1 -
Replace 2 with 1++/2 and simplify the terms:
2=1+ : T P T
1+(1+—1 ) 2+ 1
1+42 1+42

Continue this process. The pattern now becomes clear.
= 1
2 =1+ =[1; 2, 2, l,ﬁl,andsoon.
I —
2F

1
342

Eventually we conclude with the following:

1
1
1
2+...

Thus we have a periodic continued fraction for V2
(that is, v2 =[1; 2, 2, 2,...] = [1; 2]).
There are continued fractions equal to some famous numbers such as Euler's e

(e = 2.7182818284590452353...)2 and the famous n (m =
3.1415926535897932384...):

J2:1+

=[1;2,2,2,...]
2+
24




1+

2+

1+

1+

1
1
1
[y
=[231; 20514, 106, 1,1, 8,01 100 =[2; T. 28 T

4+

1+
1+

Here are two ways that 1 can be approximated as a continued fraction.2

4 b a

1
= _:] 1
| 1 I zmd2 P 5
i 32 2.3
2+ =
52 1+ 3'4
A 4.5
24 1+
93 1+...
2+

Sometimes we have continued fractions representing these famous numbers that
do not seem to have a distinctive pattern:

T=3+
7+

15+

1+

292 +

1+

1+

1+

I
]

3+...
B=13F:05. 3921 1012 0 B Lo A 2010 30 2 Do 1ol D)

2+
1+

We have now set the stage for the golden ratio. Can we express this Fibonacci-



related ratio (¢ = 1.6180339887498948482...) as a continued fraction?



Proof of the Binet Formula

Following you will find a simple way to express the Binet formula:

p= and y=

where

1+45 =5
—

P+y=l,
¢p—w=+/5, and

' f ——l
Recall the relationships that exist between ¢ and ¥ (since ¥ =~ %): ¢w=-1.

The proof will be done using mathematical induction.



We begin by noting that

Fy = lTl —0and F = 1+ S El w.fS}

V] 245
that is, for n = 0 and n = 1, the Binet formula is correct.
Therefore, we assume that it is true forn — 2 and n —

Because of the recursive formula, we have F, = F -1 + F, ,, and we must
@h -1 wfl 1 N ¢|‘1 r- rr -2 ¢n _
= = =
therefore show that '3 V 5 V5

Thus it suffices that "'+ 9" =¢" and y" '+ "= y™

n—l —, 2
@n_]+¢n_2: l+‘\/§~l‘l 1+'\.'5
2 ] 2
=, B2 — = 2
:(lwsﬁ f’1+v‘5+1]:(1+q5] (3“@]
2 I | 2 2 2
H—2 — . 2 "
(1445 T (1445) _ (1445 g
2 )\ 2 2 '

Thus, ¢"+ Gﬁﬂ_zzﬁbﬂ, as required. The corresponding result for ¥ is proved in a
similar way. The two together conclude the induction.

FOR CHAPTER 4:



Figure A-I

Development of the ratio:

Applying the Pythagorean theorem to AABC:

d:d1+d2:AC
[ 2 1 [5+45

f f 3
=\ AB*+BC* =\/(a+b)* +a’ =a-_[2+
Ve o

AP . AR - d _a+b
d , therefore,

"AB  AC’ ~ a+h

AABC; therefore,

AABP  ~
2
2
) a’|1+—
(a+b) ( ]
d ;
d | ]
a |2+—+—
\ ¢’
|
orid =a; |'5+2J§.
V s 1
CP_BC .. &_a

ABCP ~ AABC; therefore, BC~ AC" ~ a d’



2

3 3 3 —i: o
We then get d,= a o

d
’\'2+_+E
| ,.
5—+/3
ord,=a-_| :
V10

BP _ AB “_ab
5

Analogously, we have segments ¢; and ¢, along the diagonal BF, which enables
AC”

us to have ABCP ~ AABC, with BC ™

az(l—kl)
Therefore, ejza(ad"'b): e
a24+=+—
V' ¢ ¢
[
=
Thus, e,=a - |'|5+"5.
V 10
_ BC f2_a_
a+b’

Furthermore, ACFP ~ AABC, W1th LP AB, with 4.

a° 2 .1
2+=+—
e ad, V¢ ¢
or =
? a+b a[1+ 1]

which, simplified, gives us

Whereupon we can establish the lengths x and y on sides AB and BC as follows
56 - or=-=4
/1( = ”l' we get

For ABGP ~ AABC, with BP



a’ 4
|2+E+i
e\ ¢ 9 5
d % - il 8
[ —+—
V' 9o ¢

V5

Then x:w?.

Applying the Pythagorean theorem to ABHP, we get

_ . [ f
l}-‘:BH:'\“l'IIBPE—HPE —xflflz—xz =d I||5+N'S_i‘
V10 25
(=
L‘rl‘y=ﬂ+5+1"5_
10
Thus we now have AG=AB-BG=a+b—-x=
a S 5+345
a+——a-—=da- :
@ 5 10
= =
CH=BC-BH=a-y=a-a.2t¥3 =4.3=V3
10 10
EG=BE—BG=b—x=%—a-Yq. (@—ﬁj _ g 355
o 5 7. 5 10

Thus the following segment lengths give us the golden ratio

ﬂ L . @3 - ¢, +1=
Now finally we have d, e 2



To Prove That the Maximum Area of the Shaded Region Formed by Two
Congruent Perpendicular Rectangles Is Obtained When They Are Golden
Rectangles*

-5

Figure A-2

We have rectangles that give us AB=CD = FG = EH = a, AD = BC = EF = GH
=b, AM = BM = EM = FM = r, and as marked in figure A-2: « = ZAMB and 8 =
£LEMF. By symmetry, B = £LEMF = £ZAMD. Therefore, a + § = ZAMB + £
AMD = 180°, since BD is the diagonal of the rectangle ABCD.

The shaded region in figure 4-13 is actually composed of the original
rectangle ABCD and two rectangles with side lengths EF and JK

La—h
The shaded region (in fig. 4-13) is actually composed = ab+2 "2 ‘b=ab+
(a - b)b = 2ab - b*.

Applying the Pythagorean theorem to AAJM, we get AM? = AJ? + JM?, which
2 2
¥ A O ,ora=vN4r' —b*.
4 4

a
. a_ AJ a . .o
. In AAJM: sin —=-——=2 = — . therefore, a = 2r sin —.
then gives us 2 AM r r
b i
In AEKM: sinB _EK _3 _ b ; therefore, b-2rsin?. andcos® =2K-2_ 2
= 2 2 EM r 2r

2 EM

2

=



With a = 180° B, or in another form 2= 9“"’-‘% and sin (20° —‘g—} =CO0s %
E 1— ::usﬂ
wecanget " 2 7

The area of the shaded region =2ab — b2 =2b\V4r* —b* — b?

[ 2 2

[,

=11-11r5mE |4r‘—[2rsin£] — [Zr‘sinﬁj =2.2r G1[1E 2r
2\ 2 2

2 1
=4r° (2 Siﬂg : msg— sin’ g} = 4r° (sinﬁ+$——]

- I

I] sgimZE 45 :\'ninZE
|
\ 2 2

The factor 4r? has no effect on the maximum area of the shaded region.
Therefore, we shall focus our attention on the remaining factor:

_aop, cos |
J(P)=sinf+==—7 [where the area of the shaded region = 4r?f(8)], and it is

this we must maximize.

Differentiate f and then set it equal to 0 to get

f'B= ‘ll—j; = cosff— 5";‘6 =0
U F4

qmﬁ sin,ﬂ
2 u:rsﬁ

It is necessary for us to maximize, and for that we need to show for 0 < 8 < 180°
the value 3 = arctan 2 # 1.107 (radians) ~ 63.4°.

or cos = =tan B =2 or B = arctan 2.



We have

a b
. B
. 2sin—cos— 2i— .
sin 7 1 I 7 2ab g a o
2=zt f = B = = == = =F T also 2a — b ) =2ab bew. a —ab-b" =0,
2 a

cos 3 GO_EE—-\"JHLE (i]_(ir]

That is,
P

a
— =@ bzw, — = - = tan—_—=

3
b a5, cos p it 2 ¢

-
s

o ==L _ng . . .
The second derivative, - 2 , is at this point less than zero,
Marctan 2) = y"'l{arf:tanl+£j = _ﬂ{ 1] . .

: : 34 2 7, So that the maximum is at § = arctan 2 = 2 arctan
1

¢ ~63.4°.

Because ;ﬂi, we have a golden rectangle.
The area Of the Shaded region =2ab-b"= {2‘\."15 —2} < F2 ~2.472135954. .?‘2.
The shaded region covers an area of approximately 78.7 percent of the area of

the circle.
4

The ratio of the areas is ¢ to . That is,

Area., .. r x-€+]_£ ¢_£
4 4
T

Area‘:’.hade,dregmn (2\/5—2] ?'2 ) 2

®
4

To Show That the Golden Ratio Is Present
in Parts of the Pentagon and the Pentagram

We can use a number of approaches. Here we offer two such.

Option 1:



Figure A-3
AD _ DZ _CD+CZ _ CD+ AC
For AADZ ~ ABCZ, we get BC™ CZ~ (CZ ~— A4AC | or, using the length
d_a+d
designations from figure A-3, we can write this> as @ d ’

which gives us d> —ad — a®> = 0, or

2

(i) @y
a a

d
If we replace @ by x, we arrive at the (by now) well-known golden ratio

2

d
equation: x~ —x — 1 = 0, where we know that x = ¢ =4, ord=a?.

Option 2:




This time we will use the following similar triangles: AABS ~ ACES to get
EC _AB ___ AB

€S~ BS ~ BE-ES. Using the length designations for figure A-4, we can write this

d__a o d—ad-a*=0.
asa@ d—a
Dividing by a, we get

p

(i) . W

o o

again the golden ratio equation, and in similar fashion, we get d = a.
We can also see from figure A-4 thata=e+f,d=a+e=2e+f{.

C. a

b IIl . . ‘.
Therefore, 45~ d—a ¥, which gives us: a = ¢ - (d — a), or another way:
e=d-a=y, ora=eg.

Since pdint T partitions AC into the golden section,

ST=f=a-e=AT-AS=a- =g (1—% ==
o) ¢

P 2
or, in another way, we can say that @ =J/0".
It then follows that e and f are also in the golden ratio.

a

e _AS_o¢ _ .

FosT O
@2

that is, ¢ =f¢.
Furthermore, we can also establish the sides of the two consecutive pentagons

e R g2
S 2
(ABCDE and PQRST) (see fig. 4-64): 9"

= f - B i.,
which gives us A~ M=y
We represent the height, b = AF, of AACD as follows:

36° 55 a —F a . 5
=aQ-.| =—4/54+2V5=—-¢/ 9 +1.
0 ¢ \ 3 5 NIT2N=S P+ @

o
b=d-cus§ =ag@-cos



Again, we see the golden ratio everywhere in this configuration!

Justification for Note on Page 150

To showthat\{5+2‘/§:\/ﬂ5+m‘/§_Jerz‘E‘.

We begin by squaring both sides of the equation and seek to show the equality:

5+ 2f=(\/-25+mf—\/10+24’§)3.
=25+1085 +10+2v5 —2-v25+ 105 -\10+2v5

=25+10v5 +10+245 —2-4250+400+ 10045 + 5045

=25+1085 +10+2v5 —2.4350+15045

=25+10¢5 +10+245 -2. (15+5\/§):

LT L e (15+5\E)'
5+12J§—2(15+5\E)

+

(P

[
s

I
h

Pentagon's Rotation—Justification of Conclusions

__Bs

S

.||5|.4

Figure A-5

Using figure A-5, we shall take a more detailed look at what is really happening
here that allows us to draw the conclusions we drew in chapter 4.% By the first



rotation of 72° at point As, we find that A; goes to B,, A, goes to Bs, A; goes to
B,, A, goes to B: and A stays at B;. The angle of rotation, £ A,A:Bs = 72°, since
each angle of the pentagon is 108°. The isosceles AA;A:B,, where A;As; = A:B, =
a, has angles o = £AA:B, = 72° and £A:AB, = £AB,A; = 54°. We can then
generalize that continuing this process will give us £B,AE = £ZDEA,, or that in

figure 4-71 we have ZBAE = £AED = 54°. This, by the way, also establishes
that the center point of the pentagon M must lie on A;B, (fig. A-5), or as we

stated above for figure 4-71, M must lie on AB, since it bisects A,AA:.

If we apply the law of cosines! to AA;A:B,, we get

2 2 2 i
AB2=AA2+AB>-2A,AqAB,-cos LA A,B,
—a*+a’ —-2a*-cosa

=2a’(1-cos a) =2a*(1-cos 72°)

o (2 oyt ),
7 T\
=
AB=A;By=,|2—¥> a=\3-0-a
Therefore, \ (see fig. 4-71).
The diagonal d = C, C, of pentagon C; C, C5 C, Cs is bisected by the point F.
\/g-l'-l d @ .d
a=a- =¢-a; Ci=2=t"".
We have 2 therefore, > 2 2

When we apply the Pythagorean theorem to right AC,Cs;F, we get

v o[22 ~pz_ 2z (@) _ |2
CiF=4C,C -CF \lla (2) \llu 2
a f a a r——
—E'xf'4—¢5’2 —Ex,"‘j'—({f‘f'“)—?w@—ﬁ)-
Ilﬁ—xflg a |'5—\'f'§.

v a —_——
We can also express CoF =V 8 2V 2
Now we have shown that € :%"JS_@* and previously we showed that

r _ AB
AB,=av3— '?}, so we can now conclude that G F= =5
Since £ A:B:B; = £AsB:C, = 72°, we find C, is on the diagonal B;B:.
Recall that C, partitions the diagonal B,B, into the golden ratio.



We know that triangle B,B;C, is a golden triangle, so it then follows that
B B_f, d i

a.



This then leads us to

B,F=B,C,+CyF=a -I-%—a +¢%‘I— (1 +§] e

J5+45
= =il
4

We now apply the Pythagorean theorem to right AB, C; F to get

2 = 2
N ] (;5—\6 J
al| +| 4 a

|
BC=B,C;=+[B,F? +C,F* = \|'

|
b5 —

:\| 5 a=,2+¢a.

8




It follows that

BC_BC V"3 _V5+V5_
AB AB, |5_\5 = {5-4
| ———— -
Vo2
pE=9
Because of symmetry, we have DE ~ ** which was what we set out to show.

As we seek to compare areas, let's consider the strange-looking pentagon
ABCDE (or in fig. A-5, A|B,C3;DE). The area of this pentagon is the sum of the

trapezoid A;B,DE and the isosceles AB,C3D.

Q.

The area of the original pentagon is

: ADSAIE. gt =

ADrlg:inal pentagon a - 4 I E ’\.'IIS(S + 2\/5)

(see p. 154).

For the height h = C3G of AB:;C;G, we have

36° 545 a [
7 4Py VA

h=d-cos LB,C,G=a ¢ cos

Then the height of the trapezoid is

= T =

I'_ I|'_

a | r a |'5—x-'5 a |5++/5

PO=C-GouC P2 5005 2 2. .
TRE NI TN T 2 2




We have

BED:BEF+FD:ZBEF:2-£4+5-a \'@;5-&
The area of the trapezoid A;B,DE is
Area, =% (4,E + B,D) - FG
1 J5+5 a 15+45 5 [95V5+325
=—(5a+ - @) — 4 a -,
2 2 2 Y 2 Vo 32
_d* [5J5(19+13V5)
4\ 2 '
The area of AB,C;D is

1
Area hia s - 20 I Al e Sal e
ABGD 2 3 5 5 B hl >
o
= 5 ||'5J5+25 _a’ [5(5+45)
'EY 4\ 2
B, C; DE

The area of the strange-looking pentagon A;

Area,pepp= Ared, p pptArea,y o,

@ [5V5(19+13V5) @ [5(5+4/5)
4\ 2 4\ 2

-

=4 .\J225+9045 —‘L V4552 +45),

which is three times the original pentagon's area:

-

‘% J5(5+245),

which we wished to demonstrate.

Proof for the Height of the Rooflike Cap on a Cube



Figure A-6

Consider the right AAPR with a leg length AP :% and PR = h’ as well as
hypotenuse AR = a. We also have the altitude from R to the surface of the cube
forming APQR with sides PQ = x and QR = h as well as hypotenuse PR = h'. The
edge of the cube (d) is the diagonal of the pentagon whose side has length a.

Therefore, d = ¢a. With d - 2x = a we get

_d—a_9a-a_a ., y-a.l_a

S T St AU S a7

By applying the Pythagorean theorem twice, we have PR?> = h? =
h,_ﬁﬂulllﬂﬁﬁ‘l'l

2 22 g% _ 2 P
Al e gt R L= which then gives the height 2 ¢

Then a second time:

at ¢°+1 a* a

4§ 4 4

@+1-1)=922,

OR*=*=PR*~PQ*=h"-x’= a

h=%
whereupon "~ 2-

If the inscribed cube has edge length equal to 1, or d = 1, then we immediately

.3, )
g.get'ﬂ'_ﬁf_-:#'’andthenJFI 27 2¢

More Trigonometric Relationships
in Terms of the Golden Section



I R W EEY I O W A
M=V 2V 2 2 2\T o
ain54L—J§+1_ﬂ=l%#—1+¢,.

4 2 2

| |

5+\/§_1 154+/5 =%'wm:%\f2+¢j

|
I5+45 1 ’¢2+1—%

:E:lm.

(b) cos 18° =sin (90° — 18°) =sin 72° =_| E=s
\ 2"

cos 36° =sin (90° —36°)=sin 54° :@
4

5"
5=5 _ 10" +1_
2 ¢

L

J2+9.

55
¢

cos 54° =sin (90° —54°)=sin 36° =
8 2
—
5-1 1 1/ 1
cos 12° =sin (90° —72°) =58in ISD:J_————— l'l——.
4 20 2\ ¢



(c)

(d)

Cven |
tan 18° = Slr‘tlﬂa_ l|5—%x"§_ rl Ccot18° = cos18° w,u'{5+?.-\|'r_ ¢u¢ =N
cos18 | 5 O\ +1 sin18°
an 36° = Sin36° _ VO H1 o aco_ cos36°_ [5+45 ¢
tan 36° = e f5—2.f5 = 7 . cot 36 vl T el
tan ,,-}4,_12511154"_ ||5+2~.|'r5 g3 @ cot 54° = cos 54° _\m «,‘ugﬁx +1
o coss4® | 5 Jor+1 sin54° =
; o _sin72° | I - o_ c0s72° |5—2-u"§_ 1
tan 72 —msun—ﬁuﬁ—wgﬁ kK1, o0bi2 e iy
sin18° _ [5—+5 _ 1 sin36° _ [5+45 e
sin36° \ 10 M;¢2+1' sin18° \ 2 '
sin18°_3—+/5_ 1 sin54°=\/§+3:¢3
sin54° 2 ¢ sin18° 2 '
—
smige =251 s o pes
sin72° V5 g @410 sinlge P
sin36° «.." sin54° |'|5+ZJ§_ @
—=+/5— 5245 = —— =] =— .
sin 54 sin36° V5 Vo +1
sin36° _5-1_1 sin?2°_£+lz¢_
sin 72° 2 @ sin 36° 2
sins4°_ [5+45 _ ¢ in72° _ [5=+5 _ 9" +1
sin72° V10 fg2+1 sins4° V2 o




(e)

sinl8° _3-v5_ 1
cos 36° 2 ¢

sinl18  [5—+/5 |

coss4° \ 10 "'I.'IIII¢2 +1 ‘

siHISE":I
cos72°

cos72° 2

cos 36° :\/§+3:
sin]8° P

"

cusS4°: |||I5+«Jr§
sin1ge | 2

=\J@? +1.

cos72° _
sinl8°

cos54° _,
sin36°

cos72° _ [5—5 _ 1

sin36° V10 [p+1
cos72° :3—\6 :L
sin 54° 2 ¢

To Show That the Following Are True:

m=2e (ar:’ran# + arctan ®°)




and
=6 t 1 2 t i
m=6 dIc GH(D— drc CII'ItDs

Proof:8

We begin by using the known relationship:

tand +tane
l—tand -tang’

tan (0 + &) =



to get

2tan .
tan 2ae=———— (where tan” o #1).
l1—tan”" o
If we let 6 = 20 and ¢ = a in the above identity, we get

tan2a+tana  3tano—tan’ «
l—tan2¢-tanar  1—3tan’ & 1
If we now let a = arctan ?, we get

tan 3a=tan Qo + o) =

1 3 1
5 3tanarctan——tan” arctan—
Jtana—tan” &
tan 3= =

2
1=3tan" & | 3tan? arctan—
1. 1
3 ———3 2
9 ¢ _3¢-1 =3¢+2:_5J5+11=_¢5
1_3.L #¢9"-3) 1-9¢ 2

2

Since tan (180° — x) = tan (7 — x) = — tan x we have
¢’ =—tan 3a=tan (7 —3c), also 7—3a=arctan ¢,

: T 1 T 1
that is, 3a = T—arctan ¢’ = 71— (5 —arctan -z ) == + arctan ==.
f-r} L {2 ;:)3} 2 ;ﬁ,S
ot S_nm arcts 1 . .
z—arctan ¢"=3Z+arctangs, L ph when we multiply by 2
1

5 e
gives us 277 — 2 arctan ¢~ = 7 + 2 arctan ¢°

Therefore, we have

By adding (-  + 2arctan fﬁ’j) to both sides of the equation, we get m = 2 (arctan
1 1 1 1

#° + arctan fﬁ’j) =2-(3 arctan® — arctan F) = 6 arctan ¢ — 2 arctan #° .

FOR CHAPTER 5:
Curiosity 1

In an equilateral triangle, AABC, each side of length s is partitioned (with the
same orientation) into the segments a and b, which are in the golden ratio (fig.



A-7). The result is that an inscribed equilateral triangle, ADEF, is created with
side length c.

M
Figure A-7
II
Tpa=re TR o
Here are some of the appearances of ¢ in this figure: o\ ¢ ¢
2. Area,, .= Jg(i%{ﬁﬂ) 5%

3. The ratio of the areas of the two equilateral triangles is

MEaMEC e ¢"2 )
Arﬂaﬁﬂb}' ]_ +L_l
o ¢

4. The area of each of the three congruent triangles AADF, ABDE, and ACEF is
2 V3
4¢*

5. The ratio of the areas of the original equilateral triangle to one of the three
ATed e 2 -3

Area,, ..=5

congruent triangles is Area, . ¢



6. The ratio of the area of the smaller equilateral triangle to one of the three
Ar €4, per _ E

congruent triangles is AT¢@ypr @

The Justifications:

1. We begin by getting the area of AABC and ADEF:

1,43 s2\3 3
4 4

l 7 . (
Areanqpc = 55 -sin 60° = — s 7 = , and Areaapgr =

The triangles ADF, BDE, and CEF are congruent (by Side-Angle-Side, SAS).
Applying the law of cosines to triangle ADF':

DF? = C?2 = AD? + AF?2 — 2AD - AF - cos 60°

:az+b3—2afb+%:a3+bz—ab.

We partitioned the sides of the original equilateral triangle in the golden ratio.

S=8_4
Therefore,a b



It then follows that




which gives us

c=a (l+

Zszﬁ(g&z ~p+1) 32(?\/5—3\/ﬁ)

4¢* 4

~(0.1263514035 - 5".

3 Area, e 4 _(i) _ § _ ¢
AIeaMEF ﬁwﬂz c J1+L2_li ||I+_2__

4 o° ¢ ¢ \\ ¢ ¢

¢’ =3q’5+7

L1

¢p° @

=~ 3.427050983.

1+

4. JAI'UHMDF:%*AD*AF*SiH 60'):%{1{?*7—7 E—E il

£ _s3_e(Vis-243)

b3

i ¢ 4 4
~0.1022204328- 5"

3

5 Area ;¢ _ 4 — \/5
T Area,,,, 15-243 15-243
4

—5+2=243+4.236067977.
¢



TV3-3415

6. Area, e _ 4 7~/§ 3415
Area,,. +15-243 15-243

4

=5- 1_E~ 1.236067977.

A check of the above can be made by taking the sum of the areas of the four
triangles and showing that it is the area of the original equilateral triangle:

W335 5, 5 VI5-243 5 V3
4 4 4

Area, .-+ 3-Area

MD.F'

Justification for Curiosity 19

D C

A b P a B

Figure A-8

We are given that the areas of the three shaded triangles (fig. A-8) are equal:
Area,,,,= Area,pp,= Area, .

1 1 1
Therefore, 2 - b (c+d)=2-ac=12-(a+ b)d, and b(c + d) =ac = (a + b) d,
which leads to bc + bd = ac = ad + bd.

We then get
(a+b):a=c:d
(ctd)y:c=a:b.

It follows that (a + b) : (c+d)=b : d
as well as bc + bd = ac = ad + bd; thus, bc = ac. Thatis,a:b=c:d.

For our purposes:



a:%ﬂnd a:b(C+d}

b_( b(c, +d)
Therefore, d c

Multiplying both sides by cd gives us bc?

= bd (c + d) = bcd + bd?, or bc? =
bcd + bd?, which, when divided by b, ylelds c>=cd+d? orc®>—d?>—cd=0.

Then dividing by d?, we get @~

=0. There appears our equation for the
golden _section. Wlth o= d we get X

2 _ x — 1 = 0, giving us roots:
1+ '1 e 1+ '5 1+'\.5
e ST

V4 24 2

As we focus on the positive root, we have

c J5+1

i 2

Therefore,c:d=a:b=(c+d):c=(a+b):a=?=¢:1, which shows that
P and Q partition AB and BC, respectively, into the golden ratio

Construction for Curiosity 23

A

Figure A-9
The construction steps are as follows:

(1) Construct trapezoid ABCD with AD || BC and BC = 3 AD
(2) Construct right ABCE with CE = AD and £ BCE = 90°

(3) Construct the perpendicular bisector of BE at its midpoint F' and then mark G



BE
sothat FG = 2.
(4) Construct a circle with center B and radius BG to intersect BC at point H.

(5) Finally, construct parallelogram BHJK with point J on CD and point K on
AB.

We then have K partitioning the line segment AB in the golden ratio.
This can be easily justified, since with AD = b and BC = 3b, we get
BE=+BC* +CE* =bV/10, and

BG=+BF? + FG* =\2BF* =+2 -% =\E@=b~/§-



Since

962 + B2 |a? +b?
| =,/ =b5
" 2 2 Vs,

we have JK = BH = BG as the root mean square between a and b when a = 3b.
Thus, AK : BK =¢: 1.

JK =

Proof for Curiosity 24

A[ : hjl:,
Figure A-10
We are given that AB = a, BC = AD = b, and CD = c. From the relationship of
the tangents to the same (inscribed) circle, we havea+c=b + b =2b, or c = 2b
—a.

Welet a = LCAD, = £BAC,7 = LABC, § = LADC, e = £BM,C, and ' = £
CM,E; E is the midpoint of CD = c. From point C, we construct a perpendicular
CF to AB. We have CF = EM, = 2r;. Also r; = M;M,, the radius of the inscribed
circle. Furthermore, ~ BAD + £ ADC = £ ABC + £ BCD = 180°.

Since ZACB is inscribed in a semicircle, it is a right angle and 8 + ¥ = 90°.
We have isosceles AAM C, with AM, = CM, = r,, and LM AC = LACM, = .
The angles £ CME and £FCM,, as alternate interior angles of the parallel lines,
are equal. Therefore, ZCM E = ZFCM, =l.

For right AACF, therefore, ZFAC + LACF = LFAC + LACM, + £LM,CF =
26 +1=90° or 'l =90° - 20.



: ; % i BC D
For AACB: sin LZBAC =sinfi= g g

For ACEM,: sin LCM E=sinn=

Lalso b=2r_-sin f5.
B B
LM, 2’

Let's consider ¢ = 2b — a, and then substitute. c=2b—-a =2+ 2r, - sin f — 2r,
= 2r, - (2sin § — 1). On one side we have ¢ = 2r, - sin 'l. On the other hand, we
also have 2r - (2sin f—1) = 2r, - sin 'l = 2r - sin (90° — 23) 12r,.

also ¢=2r,-sinn.

2 sin B — 1 = sin(90° — 23) | subtraction?
= sin 90° - cos 2f3 — cos 90° -sin2f3
=1-cos2f-0-sin2f

= cos 2f3 | double angle formula for cosine
= cos’ — sin’f3 | the Pythagorean theorem
=1 —sin?B — sin?f3
=1-2sin’p | add 2 sin’f -1
2 sin?B+2sinB—2=0 | divide by 2

sin’f + sinf— 1 =0.

Substituting give us x = sinf3 and then appears the equation that we are by now
quite familiar with, the equation for the golden section: x* + x — 1 = 0, where the

1
only usable root is x = sinf3 = 4.
For AACM,: e = £LBM,C and LAM,C = LAM/E + LCME =90° + 1.
£
Thus, € =90° + (90° - 2p) = 2B or B = 2.
£ 1 £
To justify this, consider: sin 2 =sin = ¢ or f =2 ~ 38.17°.
|I 1 2*\"{"5 .

: : : : S 25 4
sslnz;:51n2ﬁ:25;1n,H+cns.,H:Emn,{)’-{l—smz,6 =i [ mn =

o\ ¢ ¢

thus, € # 76.35°.

M=90° -2~ 13.65°.
From £ BAD = ZABC =7, we get 3+ 7 =90° or” =90° — 3~ 51.83°.
Sincea+ =7, we get LZCAD =« =7 [~ 13.65°.



We have two angles, 2 BCD = £ZADC = 6, and we get /' + 6 = 180°, or § =
180° -7 =~ 128.17°.

For the trapezoid's sides, b=a - sin B and ¢ = MyF = 2ry sin 'l = a - sin ', thus, b

amﬁ ,orc=asinn=asin(90”-2F)=a(1-2sin ,U‘j—%—la

For the radius of the circumscribed circle: o= 2

For the radius of the inscribed circle:

For AACF: sin f=SE=2%=2L that is, r,=1-AC-sin p=1-AC-1.

2
For AABC: ACEZABE—Bczzaz—bgzaz—[la} —%az.

Theretore, AC=(—L = aﬁ .

V@
£

_alp

1
o 200

This gives uarl—— AC- AL
2 g 2D

Explanation for Curiosity 25

We provide you with an overview of the solution and refer you to a more
detailed version at the following website:
http://www.mathekalender.de/info/loesungsheft 2009.pdf (see pp. 94-99:
December 15, 2009, by Ingmar Lehmann and Elke Warmuth, Humboldt-
Universitdt-Berlin—n.b. points H and F are switched in this reference).



http://www.mathekalender.de/info/loesungsheft_2009.pdf

Figure A-11

We begin by using an auxiliary plane EFGH parallel to the base ABCD. The
height of the pyramid, KS, contains the point of intersection of the diagonals of
rectangle EFGH. We shall let AD = BC = a, AB = CD = b, and AS = 1. Also, KS
= h. There exists a value, g, where 0 <g<1,sothat ES=FS=ql, EF=GH=q -
a,LS=q- h, and AE = DF = (1 — q)I, KL = (1 — g)h. We then get 4h? + b* = 4]* —

a.

ab

1
=
Pyramid BCDF: Volume = 3 2

1 1-4°
Pyramid ADFEB: Volume = 3

-abh

When we add these two volumes, we get the lower portion of the figure.

2

q

% (1—qm+% L~ abh—— (2—q+q°)-abh.

b
';

Since we want this volume to be half the volume of the full figure, we get the
1

l: 4
—(2=g=—¢ af:rh—— —-abh, also 2—g—q~ =1.
following: 6 L 2 1=
1
This is equivalent to g% + g — 1 = 0, where the positive root is the now-familiar #.
This establishes that points E and F partition pyramid edges AS and DS into the
golden section.

AS=1L,AE=DF=(1-g)l=(1 —i}LES:FS:qI: l,

2
¢



: AS
Therefore, —=——=¢ and = = = ¢.
& = ¢ anc ¢

FOR CHAPTER 6:

Connection between the Divergence Angle
of the Real Number A, and the Number
of Visible Spirals (Contact parastichy)

P,
The convergents ¢: are the best rational approximations of A, that is, all further

fractions with a denominator smaller than Q,,;— 1 approximate A more poorly
P
than O: (Lagrange's theorem)!%—see also Rosen.l! In the case of the golden

angle, Lagrange's theorem can be proven in an elementary fashion.12
. & .
Suppose we represent the fraction x as the point (x, y) of the fundamental
lattice Z x Z, we then obtain the following geometric interpretation of Felix

Klein's (1849-1925)12 development of the continuous fraction. The points with
integer coordinates, which lie closer to a straight line (with the slope A in a
restricted band [0, x] x R of the fundamental lattice Z x Z) than the previous
points, are then essentially the points with the convergence coordinates (Qy, P;)

(fig. A-12).



c 1 2 3 4 &5 & 8 10
Figure A-12. The fundamental lattice Z xZ marked with the

straight line y =Ax, where A=2—¢=0.381966. In the gray area lies
the lattice point (5, 3), which is the point closest to the straight line.

P,
Because the convergents Y: are also the best rational approximations of A, then A

- Q ® P, and the value of the angle a; : = o - Q; — 360° - P, is smaller than all «,,
=a - n—360°-m, with n <Q,,; — 1. The additional growth Ar, =r,,; —r, of the
radial component 1= of the points generated by the Vogel model decreases

monotonically. For this reason, an area exists (see below) where the next
neighbor of the point X(Q,) is the point X(2Q,), and the point X(Q, + 1) is

followed by the point X(2Q, + 1), and so on. In this way, Q, spirals with the
same rotational direction are generated as well as the arithmetic progression of
the indexes of the points on the spiral. 1

Figure A-13. Genesis of a parastichy.



Notes

Introduction

1. J. Kepler, Gesammelte Werke, vol. 1, Mysterium cosmographicum. De
stella nova, ed. Max Caspar (Munich: C. H. Beck, 1938).

Chapter 1: Defining and Constructing the Golden Ratio

1. In an article on aesthetics in the ninth edition of the Encyclopedia
Britannica, 1875.

2. Euclid, Elements, book 2, proposition 11; book 6, definition 3, proposition
30; book 13, propositions 1-6.

3. There is reason to believe that the letter ¢ was used because it is the first
letter of the name of the celebrated Greek sculptor Phidias (ca. 490-430 BCE)
(in Greek: [Pheidias] PEIAIALX or (ff’ﬂ'“ﬂﬂg), who produced the famous statue of
Zeus in the Temple of Olympia and supervised the construction of the Parthenon
in Athens, Greece. His frequent use of the golden ratio in this glorious building
(see chap. 2) is likely the reason for this attribution. It must be said that there is
no direct evidence that Phidias consciously used this ratio.

The American mathematician Mark Barr was the first using the letter ¢ in
about 1909 (see Theodore Andrea Cook, The Curves of Life (New York: Dover
Publications, 1979), p. 420. It should be noted that sometimes you will also find
the lowercase ¢—or less commonly the Greek letter 7 (tau), the initial letter of
TOUT (to-me or to-mi’), meaning to cut.

4. This construction is credited to Heron of Alexandria (ca. 40-ca. 120).

5. This theorem was originally demonstrated by Euclid in book 6 of his
Elements § 3. The proof can also be found in A. S. Posamentier, J. H. Banks, and
R. Bannister, Geometry: Its Elements and Structure (New York: McGraw-Hill,
1977).

6. It was observed by George Odom, a resident of the Hudson River
Psychiatric Center, in the early 1980s (see J. van Craats, “A Golden Section
Problem from the Monthly,” American Mathematical Monthly 93, no.7 [1986]:
572 or C. Pritchard, ed., The Changing Shape of Geometry [Cambridge:
Cambridge University Press, 2003], p. 294).

7. AM=AG, since they are two tangents to a circle from the same external
point.



8. Florian Cajori, A History of Mathematics, 5th ed. (1894; repr., New York:
Macmillan, 1999), p. 29.

9. Lee Dickey, “The 3-4-5 Right Triangle and the Golden Mean Discovered
by Gabries Bosia,” http://www.math.uwaterloo.ca/~ljdickey/geometry corner/3-
4-5.html (accessed October 12, 2011).

10. Hans Walser, “The Golden Section and Lattice Geometry,” 2006, pp. 10—
12,
http://www.math.unibas.ch/~walser/Miniaturen/M48_GS_and_lattice_geometry/!

11. Kurt Hofstetter, “A Simple Construction of the Golden Section,” Forum
Geometricorum 2 (2002): 65-66.

Chapter 2: The Golden Ratio in History

1. The British egyptologist W. M. F. Petrie (1853-1942) established these
measurements.

2. Herbert Westren Turnbull, The Great Mathematicians (London: Methuen,
1929).

3. Euclid's Elements, book 6, definition 3.

4. This “mean and extreme ratio” Euclid defines (book 6, definition 3) as
follows: “A straight line [segment] is said to have been cut in extreme and mean
ratio when, as the whole line [segment] is to the greater, so is the greater to the
lesser.”

5. Some mathematics books use the Greek letter 7 (tau) representing the first
letter of the Greek word meaning “to cut”

6. Leonardo da Vinci was a polymath: painter, sculptor, architect, musician,
scientist, mathematician, engineer, inventor, anatomist, geologist, botanist, and
writer.

7. Wikipedia, s.v. “List of works designed with the golden ratio,”
http://en.wikipedia.org/wiki/List_of works designed with_the golden ratio
(accessed October 12, 2011).

8. Dan Pedoe, Geometry and the Visual Arts (Harmondsworth, UK: Penguin,
1976; New York: Dover, 1983).

9. George Markowsky, “Misconceptions about the Golden Ratio,” College
Mathematics Journal 23, no. 1 (1992): 2-19.

10. Marguerite Neveux and H. E. Huntley, Le nombre d'or: Radiographie
d'un mythe suivi de La divine proportion (Paris: Editions du Seuil, 1995).

11. Roger Herz-Fischler, A Mathematical History of the Golden Number
(Mineola, NY: Dover, 1998).

12. The pseudonym for Charles Edouard Jeanneret-Gris (1887-1965), a



http://www.math.uwaterloo.ca/~ljdickey/geometry_corner/3-4-5.html
http://www.math.unibas.ch/~walser/Miniaturen/M48_GS_and_lattice_geometry/GS_and_lattice_geometry.pdf
http://www.en.wikipedia.org/wiki/List_of_works_designed_with_the_golden_ratio

Swiss-French architect and artist.

13. Etienne Béothy (1897-1961), a French-Hungarian sculptor and artist.

14. Jo Niemeyer (1946—), a German graphic artist and architect.

15. See also the examples in A. S. Posamentier and I. Lehmann, The
Fabulous Fibonacci Numbers (Amherst, NY: Prometheus Books, 2007), pp.
231-69; also see Ingmar Lehmann, “Fibonacci-Zahlen— Ausdruck von
Schonheit und Harmonie in der Kunst,” Der Mathematikunterricht 55, no. 2
(2009): 51-63.

Chapter 3: The Numerical Value of the
Golden Ratio and Its Properties

_ —b+Jb —dac
. For the equation ax? + bx + ¢ =0, the formulais*=— 22 -
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3. We offer the value of % here also to 1,000-place accuracy.

4. For more information on these ubiquitous numbers, see A. S. Posamentier
and I. Lehmann, The Fabulous Fibonacci Numbers (Ambherst, NY: Prometheus
Books, 2007).

5. Paramanand Singh, “Acarya Hemacandra and the (So-Called) Fibonacci
Numbers,” Mathematics Education 20, no. 1 (1986): 28-30.

6. Simon Jacob was one of the best-known German master calculators of his
time. In 1557 he published a practice book on arithmetic calculation that gave
insight to the art of calculation. (Rechenbuch auf den Linien und mit Ziffern,
1557; reprint Ein New und Wolgegrundt Rechenbuch, 1612).

7. Peter Schreiber, “A Supplement to J. Shallit's Paper ‘Origins of the
Analysis of the Euclidean Algorithm,’” Historia Mathematica 22 (1995): 422—
24,

8. The theory of continued fractions goes back to Leonhard Euler (1707-
1783). A yet earlier appearance of continued fractions can be found in the
seventeenth century when Christian Huygens (1629-1695) used them to
construct gears to model the solar system and tried to approximate the relative
speeds of the planets with as few numbers as possible.

9. A unit fraction is a fraction with the numerator 1.

10. This is done by considering the value of each portion of the continued
fraction up to each plus sign, successively.

11. The values given in this chart are rounded to nine decimal places.
F

12. To prove this, we assume L would be the limit of the series % -
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n

F
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. K | i
sin 36° 1'1 5 Vo +1
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Chapter 5: Unexpected Appearances of the Golden Ratio
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Lehmann, m: A Biography of the World's Most Mysterious Number (Amherst,
NY: Prometheus Books, 2004), pp. 211-13.
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(Hoboken, NJ: John Wiley, 2002), pp. 128-30.
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(Ambherst, NY: Prometheus Books, 2003).
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17. In general, the perpendicular C,_; C, at C,, intersects line through B and

C,_; at point C, 4.
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1.61803 (recognized value of golden ratio), 14
expansion of
expanded to one thousand places, 50-51
table showing history of, 52

as a Fibonacci-related ratio, 105, 301

number of places Qﬁ has been computed to, 52
numerical value and properties of, 49-79
seen in the drawing of the Vitruvian Man, 47
See also golden ratio; golden section
4, using four 4s to represent natural numbers, 252-54

e (Euler's number), 299-300
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5*14-15. See also golden section

A (lambda), 330-31
? (ohi)

creating a qﬁ Day on January 6, 254

as the geometric division of a segment. See golden section

number of places Qﬁ has been computed to, 52
as a numerical value. See golden ratio
t (pi), 78-79, 299-301

celebration of m Day, 254
5
U, (as best approximation of real number 1), 330-31

¥ (psi) (golden angle), 136. See also angles, golden angles

38

irrationality of, 53

and the ratio of Lucas numbers to
Fibonacci numbers, 73

replacing with a Fibonacci number, 69

X2 +x-1=0 (golden equation), 15, 27, 43

acute triangles. See triangles, acute triangles
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Aeonium tabuliforme, Fibonacci spiral pattern found in, 255-56
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almond, divergence angle in, 258

Ammann, Robert, 117

angles
divergence angle, 257-58
and plant growth, 260-63

of the real number A and number of visible spirals, 330-31

golden angles, 136

and Fibonacci numbers found in the plant kingdom, 257-60, 26

found in scale insects, 263

spiral patterns generated with the Vogel model for, 260
apical ring, 264
arbelos [shoemaker's knife], 209-13

area of, 212

golden ratio arbelos, 210

Archimedean spiral, 109

Archimedes, 78, 209

Art of Prosody [Chandabhstitras] (Pingala), 56
Atela, Pau, 266

beech, divergence angle in, 258

Béothy, Etienne, 48

Berg, M., 52

Bernoulli, Daniel, 69

Bernoulli, Jakob, 109

Bernoulli, Nicolaus, 69

Better Way to Construct the Sunflower Head, A (Vogel), 259
bifurcation and fractals, 269-73

Binet, Jacques-Philippe Marie, 68, 69
Binet formula, 68-79
proof of, 301-302
Bosia, Gabries, 29
botany and the golden ratio, 255-67, 29

California as the Golden State, 188-89
capitulum [flower heads], 255, 259
Carroll, Lewis. See Dodgson, Charles Lutwidge
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Chandahsli tras [Art of Prosody] (Pingala), 56
Cheops (Khufu), Pyramid of (use of golden ratio), 29-43
chords

in a semicircle, 2101

smaller circle partitioning chord of a

larger circle creating golden section, 205—207

two intersecting chords of a circle are equal, 23, 26

use of to construct a golden segment, 27-28
circles

chords

smaller circle partitioning chord of a larger circle creating golden section, 205-207

two intersecting chords of a circle are equal, 23, 26
use of chord and circle to construct a golden segment, 2728
circles placed in a hexagram pattern, 199-202
circles placed in a pentagon pattern, 202—205
circumradius of circumscribed circles, 148
concentric circles, use of to construct a golden segment, 29-30
congruent circles

pattern formed with five concentric circles, 199-202

use of to construct a golden segment, 30

continuous reappearance of golden section in circles, 195-96

equicircles, 131

finding the golden angle in, 257
and the golden ellipse, 161-62
golden radii, 130-36

golden sections in yin and yang symbol, 213—1

inscribed circle in a rhombus, 114-16
isosceles trapezoid with an inscribed circle revealing golden ratio, 24546, 326-28
lune of a circle, 205, 206

square with circle inscribed tangent to two sides revealing golden ratio, 229-3

tangent circles
tangential circles and phyllotactic lattice, 263
use of tangent circles to construct a golden segment, 31-32
use square and circle to construct a golden segment, 2627
using line segments and circle to create golden section, 195-96
See also semicircles
circumradius, 148, 179

concentric circles. See circles



congruent circles. See circles
constructing the golden section. See golden section, construction of

contact parastichies, 260

continued fractions, 296-301

convergents of, 59

use of with golden ratio and Fibonacci numbers, 61-67, 260

defining, 58-60

infinite continued fraction, 61-62, 78

and Lucas numbers, 70

use of with golden ratio and Fibonacci numbers, 61-67
convergents, 297

of continued fractions, 59

use of with golden ratio and Fibonacci numbers, 61-67, 260

convergents ' 'L% as best approximation of real number A, 330-31
Conway, John H., 119
Corner, E. J. H., 264
Couder, Yves, 265
crassulacean succulent, Fibonacci spiral pattern found in, 255-56
Cross

golden section in a cross of congruent squares, 22425

golden section in the Cross of Lorraine, 225-29
cubes and cuboids. See hexahedrons (cubes)
curiosities and the golden ratio. See golden ratio, unusual/unexpected appearances of

cylinder lattice, 261-63

dandelions, Fibonacci spiral pattern found in, 255-56

darts as rhombus-shaped tiles, 11921
da Vinci, Leonardo, 46-47, 178
Decatur, Illinois, representing golden section intersection, 188—-89
De Divina Proportione [The Divine Proportion] (Pacioli), 14, 4546, 178
de Gaulle, Charles, 226
Descartes, René, 109
diagonals
in construction of golden sections, 20, 26
and fractals, 269, 283, 284
of a golden cuboid, 163
of golden rectangles

comparing diagonals to a golden rectangle, 85-87

connection between divergence angle of real number A and number of visible spirals, 330-31



finding the length of, 82-83

and perpendiculars to the diagonal, 93-95

two congruent rectangles, 95-96, 306-308

use of semicircles to find golden ratio along, 92-93
of an inscribed cube, 177, 315-16
of an inscribed quadrilateral, 216-17, 315

of an inscribed trapezoid, 217

and the paper-folding exercise, 218-21

and parallelograms, 88

irrationality of Qb shown, 53
ratio of the diagonal of a regular petagon, 137, 145-47
and rectangles

Charles Dodson's exercise, 222

of reciprocal rectangles, 84-85
of a rhombus, 112, 114, 115, 120, 204
golden rhombus diagonals are in the golden ratio, 113, 116-19

and the side of a pentagon, 143-44
of a right pyramid, 328-29
and spirals, 110
dilation
dilation of a cube, 28687

linear dilation, 285, 286, 288, 291

dimension
calculating dimensions of fractal objects, 285
concept of, 285, 288

divergence angle. See angles, divergence angle
Divine Proportion, The [De Divina Proportione] (Pacioli), 14, 45-46, 178
divine section [sectio divina]. See golden ratio
front view of, 181
in portrait of Luca Pacioli, 178
rooflike cap found on, 177, 315-16
side view of, 182-83
stellated dodecahedron, 187-88
Dodgson, Charles Lutwidge, 221
Douady, Stéphane, 265
dual polyhedra, 174-83
Diirer, Albrecht, 283




e (Euler's number), 299-300
Elements (Euclid), 33-34, 4344, 57, 66, 167
ellipse, golden, 161-63

equiangular spiral, 109

~

equicircles, 131

equilateral triangle. See triangles, equilateral

equiradii, 131

Euclid, 178
and construction of a golden segment (method 15), 34-35
Elements (Euclid), 33-34, 43-44, 57, 66, 167
first mentioning golden ratio, 43-44

Euler, Leonhard, 69, 168

Euler's number (e), 299-300

exradii of escribed circles of a triangle, 133

Faust (Goethe), 138
Fee, G.J., 52
Fibonacci [aka Leonardo of Pisa], 48, 56-58
Fibonacci numbers, 12, 56-58
and the Binet formula, 68-79

Fibonacci-Lucas spiral, 129-30

and flag dimensions, 138-39

found in a Fibonacci-Lucas spiral, 129-30

found in Dodgson's missing area problem, 222-23
found in the state of Illinois, 188-89

and the golden angle, 257-60

and golden strings, 251

and Lucas numbers, 73

and the plant kingdom, 255-56, 263, 264, 266-67

powers of Qb extended, 5766 proof of, 296

ratios of consecutive Fibonacci numbers, 67

and reciprocals
reciprocal of two consecutive Fibonacci numbers, 67-69, 294
reciprocals of Fibonacci numbers in the position of powers of 2, 75

relationship to the golden ratio, 48, 294

powers of Qb extended, 57-67
flags
flag dimensions, 138-3

flag of Free France using Cross of Lorraine, 226




flags using a five-pointed star, 138
flower heads [capitulum], 255, 259

formulas
for the golden ratio, 14, 15-16, 27, 43 reciprocal of the golden ratio, 15

See also Binet formula; Heron's formula for area of a triangle; Lagrange's theorem; Ptolemy's theorem;
Pythagorean theorem; quadratic formula fractals and the golden ratio, 269-92, 294

calculating dimensions of fractal objects, 285-91
construction of the square fractal, 276-78
irrational dimension as a trait among fractals, 289
perimeter of, 289-90

reciprocals, 275, 276

fractions. See continued fractions

geometry
and applications of the golden ratio, 12
and construction of a golden segment

method 1 (using a rectangle), 16-18
method 2 (using a triangle), 18-19
method 3 (using adjacent squares), 19-20
method 4 (using a circle and congruent squares), 20—21
method 5 (using a circle and a square), 21-22
method 6 (using an equilateral triangle), 22—24
method 7 (using an isosceles triangle and a square), 24-25
method 8 (using a circle, a square, and an equilateral triangle), 2627
method 9 (using a circle and a chord), 2728
method 10 (using a right triangle), 28-29
method 11 (using concentric circles), 29-30
method 12 (using adjacent congruent circles), 30
method 13 (using circles tangent to each other), 31-32
method 14 (using circles on a coordinate grid), 32—-33
method 15 (Euclid's using right triangle), 34—35
method 16 (using five circles), 35-37

See also specific geometric figures, e.g., rectangles, squares, triangles, etc.

Giza, Great Pyramid at (use of golden ratio), 29-43

Goethe, Johann Wolfgang von, 138

golden equation (x2 +x-1=0),15,27,43
golden point, 82
golden ratio

components of, 13-16



construction of, 293. See also golden section, construction of and flag dimensions, 138-39

formulas, 14-16, 27, 43 reciprocal of the golden ratio, 15
using quadratic formula, 11
and fractals, 269-92, 294
construction of the square fractal, 276-78
geometric representation of. See golden sequence
history of, 14, 39-48, 293
irrationality of, 52-56
numerical value of, 14, 294. See also 1.61803 (recognized value of golden ratio) number of places Qb has
been computed to, 52
trigonometric functions and numerical representation of Qb’ 79
using roots that are not complex numbers, 7677
and the value of r, 78-79
and pentaflakes
creation of, 283-85
in the plant kingdom, 255-67, 29

=1, =7

power of Qb extended using Fibonacci numbers, 57-66
proof of, 296

producing a right triangle with side lengths related to Qb, 235-37

properties of, 4979
and the Binet formula, 68-79

extension of powers by using Fibonacci numbers, 57-67, 296
ratio of areas of parallelograms (one inside the other) showing qb:l, 241-43

rectangular “spiral,” using a right triangle with side lengths related to Qb to produce, 237-41

relationship to Fibonacci numbers, 294
terms used for, 13-14, 16

golden ratio as term to refer to numerical value of Qb’ 16
unusual/unexpected appearances of, 191-254

curiosity 1 (inscribed equilateral triangle in an equilateral triangle), 191-93, 320-23

curiosity 2 (triangles constructed with sides having lengths x%, Xn+1, xn+2), 191-93

curiosity 3 (continuous reappearance of golden section in circles), 195-96

curiosity 4 (using line segments and a circle to create golden section), 195-96

curiosity 5 (finding golden sections in a hexagram), 197-99

curiosity 6 (beauty of circles in hexagram pattern), 199-202

curiosity 7 (circles in a pentagon pattern), 202—-205

curiosity 8 (smaller circle partitioning chord of a larger circle creating golden section), 205-207

curiosity 9 (congruent semicircles within a square producing reciprocal of golden ratio), 207—209



curiosity 10 (using a golden section to construct other golden sections using the arbelos), 209-13
curiosity 11 (golden sections found in yin and yang symbol), 213-15

curiosity 12 (Ptolemy's theorem applied to a pentagon), 216—18

curiosity 13 (paper-folding exercise), 218-21

curiosity 14 (solving Dodgson's missing area problem using the golden ratio), 221-24 curiosity 15
(golden section in a cross of congruent squares), 22425

curiosity 16 (finding golden section in the Cross of Lorraine), 225-29
curiosity 17 (square with circle inscribed tangent to two sides), 229-33

curiosity 18 (square partitioned into four congruent trapezoids and a smaller square), 233-34

curiosity 19 (rectangle partitioned into four triangles), 235, 323-24
curiosity 20 (producing a right triangle with side lengths related to ¢’)’ 235-37

curiosity 21 (using a right triangle with side lengths related to qbto produce a rectangular “spiral”),
237-41

curiosity 22 (ratio of areas of parallelograms showing ¢:1), 241-43

curiosity 23 (partitioning isosceles and nonisosceles trapezoids), 243-45, 325-26

curiosity 24 (isosceles trapezoid with an inscribed circle), 24546, 32628

curiosity 25 (right pyramid with a rectangular base), 246-47, 328-29

curiosity 26 (use of perpendiculars on a triangle to create a golden section), 247-49

curiosity 27 (creating golden strings), 249-52

curiosity 28 (representing natural numbers using only four 4s), 252-54

use of qﬁ to mean golden ratio in honor of Phidias, 44

See also under specific types, e.g., angles, golden angles, hexahedrons, golden cuboid, spirals, golden
spirals, triangles, golden triangles, etc.

golden section

appearing in a golden cuboid, 164, 165

applied to states of California and Illinois, 188-89

construction of method 1 (using a rectangle), 16-18
method 2 (using a triangle), 18-19
method 3 (using adjacent squares), 19-20
method 4 (using a circle and congruent squares), 20—21
method 5 (using a circle and a square), 21-22
method 6 (using an equilateral triangle), 22—-24
method 7 (using an isosceles triangle and a square), 24—25
method 8 (using a circle, a square, and an equilateral triangle), 2627
method 9 (using a circle and a chord), 27-28
method 10 (using a right triangle), 28-29
method 11 (using concentric circles), 29-30

method 12 (using adjacent congruent circles), 30



method 13 (using circles tangent to each other), 31-32
method 14 (using circles on a coordinate grid), 32—33
method 15 (Euclid's using right triangle), 34—35
method 16 (using five circles), 35-37

found in golden pyramid, 184-85

found in pentagons and pentagrams, 141-42

found in rhombicuboctahedron, 178

golden section-related relationships in dodecahedrons, 179-80

and sides of a golden triangle, 122-23
terms used for, 13-14, 16

golden section as term for geometric division of a segment into ratio of QE(}’ 16
trigonometric relationships in, 316-19

unusual/unexpected appearances of curiosity 3 (continuous reappearance of golden section in circles),
195-96

curiosity 4 (using line segments and circle to create golden section), 195-96
curiosity 7 (circles in a pentagon pattern), 202—-205
curiosity 8 (smaller circle partitioning chord of a larger circle creating golden section), 205-207

curiosity 10 (using a golden section to construct other golden sections using the arbelos), 209-1

curiosity 11 (golden sections found in yin and yang symbol), 213-15

curiosity 15 (golden section in a cross of congruent squares), 224-25

curiosity 16 (finding golden section in the Cross of Lorraine), 225-29

curiosity 23 (partitioning isosceles and nonisosceles trapezoids), 243—45, 325-26
curiosity 25 (right pyramid with a rectangular base), 246-47, 328-29

curiosity 26 (use of perpendiculars on a triangle to create a golden section), 247-49

use of term for geometric division of a segment into the ratio of QE(}’ 16
golden sequence, 91-92, 251
in a golden triangle, 125-27
“Golden State,” 188-89
golden strings, creating, 249-52
goldpoint (golden point), 82
Golé, Christophe, 266
Gourdon, X., 52
Great Pyramid at Giza (use of golden ratio), 39-43

Harmonice Mundi (Kepler), 187
Hemacandra, ,Eacflrya, 56
Hemiunu, 39

Herodotus, 43

Heron's formula for area of a triangle, 134



Herz-Fischler, Roger, 48
hexagons, 155-56
beauty of circles placed in a hexagram pattern, 199-202
finding golden sections in hexagrams, 197-99
hexahedrons (cubes), 167, 174
dilation of a cube, 286-87

golden cuboid, 163-67, 175

area of faces of, 164
four types of rectangular solids found in, 165-67

icosahedron inscribed in a cube, 178-79

rooflike cap covering an inscribed cube in a dodecahedron, 177, 315-16

Hippasus of Metapontum, 137-38
Hofmeister, Wilhlem, 265
Hotton, Scott, 266

icosahedrons, 167, 169-71, 174, 175-7

golden rectangles within, 173-74, 176-77

inscribed in a cube, 178-79
Illinois as an intersection point of golden sections, 188—-89
inradius of a triangle, 132
Irlande, A., 52
irrational numbers, 52, 137
irrational dimension as a trait among fractals, 289

reciprocal of the golden ratio as, 79

and the value of Qb’ 52-56, 294
isosceles trapezoid. See trapezoids, isosceles trapezoid

isosceles triangle. See triangles, isosceles triangle
Jacob, Simon, 57

Kepler, Johannes, 12, 14, 51, 67, 187, 264
Kepler triangle, 89
Khufu (Cheops), Pyramid of (use of golden ratio), 29-43
kites
found in pentagons and pentagrams, 145
as thombus-shaped tiles, 119-21
Kondo, S., 52
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5*14-15. See also golden section
A (lambda), 330-31



Lagrange's theorem, 330

lambda (), 330-31

leaf primordia, angles of, 263, 265

Le Corbusier, 48

Leonardo da Vinci, 46-47, 178

Leonardo of Pisa [aka Fibonacci], 48, 56-58
Liber Abaci (Fibonacci), 48, 56-58

lime, divergence angle in, 258

Lincoln, Abraham, 34

linear dilation, 286, 288

logarithmic spiral. See spirals, logarithmic
Lorraine, Cross of, 225-29

Lucas, Edouard, 48, 70

Lucas numbers, 70-73

and Fibonacci numbers, 73
found in a Fibonacci-Lucas spiral, 129-30
Lucas spirals found in the plant kingdom, 265, 266

relationship to the golden ratio, 48
lune of a circle, 205, 206

Maestlin, Michael, 51

Markowsky, George, 48

mdtrameru [Mountain of Cadence], 56
miraculous spiral [spira mirabilis], 109
Moivre, Abraham de, 69
morphological adaptation, 26367

Mountain of Cadence [mdtrameru], 56

natural numbers

Fibonacci number for any natural number, 68, 69, 296

new growth leaves adhering to, 261

ratio of diagonal to the side of a pentagon, 137

using four 4s to represent, 252-54
nautilus shell, 111
Neveux, Marguerite, 48
Niemeyer, Jo, 48

numbers. See irrational numbers; natural numbers; rational numbers

oak, divergence angle in, 258

obtuse triangles. See triangles, obtuse triangles



octahedrons, 167, 171-72, 174
Ohm, Martin, 14

oval shape. See ellipse, golden

Pacioli, Luca, 14, 44-45, 178
Pagliarulo, S., 52
parallelogram, 112

in paper-folding exercise, 218-21

ratio of areas of parallelograms (one inside the other) showing qb:l, 241-43
See also rhombus
parastichy numbers, 260—63

connection between divergence angle of real number A and number of visible spirals, 330-31
Parthenon (as a golden rectangle), 4445
pear, divergence angle in, 258
Pedoe, Dan, 48
Penrose tessellations (work of Ammann), 117-19
pentaflakes, 291
creation of, 283-85

dimensions of, 291-92

pentagons and pentagrams
applying Ptolemy's theorem to, 216—18
area of, 152-55
as base for golden pyramid, 184

circles in a pentagon pattern, 202—205
construction of, 156-58
dissecting into obtuse and acute golden triangles, 279
found in dodecahedrons, 179, 181
found in icosahedrons, 171
and fractals, 279, 280-85
and pentaflakes, 283-85, 291-92
golden pentagon found in yin and yang symbol, 215-16
golden ratio found in, 137-55, 158-60, 308-311
in paper-folding exercise, 218-21

pentagon's rotation, 158—-59
justification of conclusions, 311-15
and polygon constructions, 155-58
presence of pentagrams in today's
society, 138-39
ratio of diagonals to a side, 144-45, 170




ratio of the diagonal of a regular
petagon, 137

pentagram. See pentagons and pentagrams
phi ()
creating a ¢Day on January 6, 254

as the geometric division of a segment. See golden section

number of places thas been computed to, 52
as a numerical value. See golden ratio
Phidias, 44-45
phyllotactic lattice, 263
phyllotaxis and the golden ratio, 255-67, 29

causal model of phyllotaxis, 26367
pi (1), 78-79, 299-301
celebration of m Day, 254

Pingala, 56
i
O, (as best approximation of real number 1), 330-31

plant kingdom and the golden ratio, 255-67, 294
Plato, 33
Platonic solids, 46, 16768, 174, 188. See also polyhedra Plouffe, S., 52

Poinsot, Louis, 187

point, golden, 82
Pollio, Marcus Vitruvius, 46
polygons
construction of, 155-58
polygon faces on polyhedrons, 167, 174

See also hexagons; pentagons and pentagrams; quadrilaterals; rectangles; rhombus; squares; trapezoids;
triangles polyhedra

dual polyhedra, 174-83

golden polyhedra, 167-83
Kepler-Poinsot solids, 188

Platonic solids, 46, 167-68, 174, 18
properties of, 168

o]

types of regular polyhedra, 167

See also dodecahedrons; hexahedrons (cubes); icosahedrons; octahedrons; tetrahedrons
primordium and Ridley algorithm, 265
proportion

defining, 13

identifying pleasing proportions, 11-12



psi () (golden angle), 136. See also angles, golden angles Ptolemy I (pharaoh), 33
Ptolemy's theorem, 21618
pyramids
golden pyramid (pentagon base), 184—89
area of, 186
height of, 185
volume of, 187
right pyramid with a rectangular base revealing golden sections, 246—47, 328-29
Pythagorean theorem, 12
applied to Great Pyramid of Giza, 42
and the golden ellipse, 161
and triangles within a golden rhombus, 113-14

used to find golden ratios in a hexagram, 198-99

use of in finding height of a golden pyramid, 185

use of in yin and yang symbol, 214, 215

use of to find area of a golden triangle using golden radii, 134

use of to find golden ratio between hypotenuse and shorter leg (Kepler triangle), 89-90
use of to find golden ratios in golden rectangles, 85-87, 303-305

use of with perpendiculars to the diagnonal of a golden rectangle, 93-95

and the volume of a golden cuboid, 163

quadratic formula
derivation of, 295-96
used in solving for golden ratio, 14

use of to find reciprocal of the golden ratio in fractals, 275

use of with ratio of areas of parallelograms, 242
quadrilaterals, 112
found in pentagons and pentagrams, 141, 143, 145
inscribed in a circle (Ptolemy's theorem), 216—17
solving Dodgson's missing area problem using the golden ratio, 22124

See also pentagons and pentagrams; rectangles; rhombus; squares; trapezoids

radii
circumradius, 148, 179
equiradii, 131
exradii of escribed circles of a triangle, 133
golden, 130-36

radius of a pentagon with a circumscribed circle, 148

radius of a triangle, 132



ratio, golden. See golden ratio

rational numbers, 52

real number A, divergence angle of and number of visible spirals, 330-31
reciprocals
and Fibonacci numbers

reciprocal of two consecutive
Fibonacci numbers, 67-69, 294

reciprocals of Fibonacci numbers in the position of powers of 2, 75

congruent semicircles within a square producing reciprocal of a golden ratio, 207-209

finding in fractals, 275

finding the reciprocal of the golden ratio, 15

in fractals, 275, 276

as irrational numbers, 79, 294

use of reciprocal of to construct a golden section, 19-21
reciprocal of a reciprocal, 59
reciprocal rectangles, 84, 105
use of to determine dimensions of Cheops pyramid, 43

rectangles

finding golden ratio in rectangle partitioned into four triangles, 235, 323-24
found in Dodgson's missing area problem, 22124
golden rectangles, 11, 81-102, 176

area of, 83

as basis for golden spiral, 102-108

construction of, 16—-18

creating golden spiral from squares within a golden rectangle, 104-108, 11

determining areas of squares within, 97-103

finding along length of hypotenuse of a right triangle, 90
finding golden ratios within, 85-87, 303-305

finding the length of the diagonal, 82—-83

found in icosahedrons, 173-74

inscribed into a square, 87-89

method for constructing line segments of lengths Qb’ ¢2, ¢3 &, 91-92
and perpendiculars to the diagonal, 93-95

providing maximum area formed by two congruent rectangles when they are golden rectangles,
95-96, 306-308

reciprocal rectangles, 84, 105
solid form of. See cubes, golden cuboid

use of semicircles to find golden ratio along diagonals, 92-93



rectangular spiral, creation of using a right triangle with side lengths related to Qb to produce, 23741

rhombicubocatahedron, 178
rhombus
found in circles in a pentagon pattern, 204
found in pentagons and pentagrams, 143-44
golden rhombus, 112-21
area of, 113-16
diagonals of are in the golden ratio, 116-19

rhombic form of pomegranate seeds, 264-65
Ridley, J. N., 264
Ridley algorithm, 265-66

creating spiral patterns, 266

right pyramid. See pyramids, right pyramid
right triangle. See triangles, right triangle,
root mean square, 24344, 326

San Marco cathedral, 187
Schimper, Karl Friedrich, 258
Schwendener, Simon, 264
Sebah, P., 52

sectio divina [divine section]. See golden ratio

section, golden. See golden ratio
self-similarity, 285, 288
semicircles

chords in a semicircle, 211

congruent semicircles within a square producing reciprocal of a golden ratio, 207-209

golden sections in yin and yang symbol, 213-15

use of arbelos to create golden sections, 209-13

use of to construct a golden segment, 21-22
use of to find golden ratio along diagonals, 92-93
See also circles

semiperimeter, 132, 133, 135, 341

Shallit, J., 52

shoemaker's knife [arbelos], 209-1

area of the arbelos, 212
golden arbelos, 210

shoot apical meristem, 264

similarity dimension, 285

Simson, Robert, 66



solid figures

Kepler-Poinsot solids, 188

See also polyhedra
spheres
and dodecahedrons, 179-80, 183

and Platonic solids, 168

right circular cylinder inscribed in, 96

sphere packing model, 263
spirals
Archimedean spiral, 109

divergence angle of the real number A and number of visible spirals, 330-31

equiangular spiral, 109

and Fibonacci numbers found in the plant kingdom, 255-56, 265, 266

golden spiral, 10812

creating from squares within a golden rectangle, 104-108

creating golden spiral from a golden triangle, 127-30

creating golden spiral from squares within a golden rectangle, 110

Fibonacci-Lucas spiral, 129-30
logarithmic spiral, 109, 112
generated from a golden rectangle, 104-108

generated from a golden triangle, 127-30

and Lucas spirals found in the plant kingdom, 266

rectangular spiral, 247-49

creation of using using a right triangle with side lengths related to Qb to produce, 237-41

spiral patterns generated with the Vogel model, 260
spiral phyllotaxis, 263—64

spira miabilis [miraculous spiral], 109

spira miabilis [miraculous spiral], 109
square fractal, construction of, 27678
square roots
and derivation of the quadratic formula, 395-96

and the golden ratio

square root of Qb (phi), 41

positive square roots, 31, 76, 134, 206, 242, 324, 329
root mean square, 24344, 326



irrationality of, 53
and the ratio of Lucas numbers to Fibonacci numbers, 73
replacing with a Fibonacci number, 69
squares
comparing diagonals to a golden rectangle, 85-87

congruent semicircles within a square producing reciprocal of a golden ratio, 207-209

construction of, 156

creating golden spiral from squares within a golden rectangle, 104—108

determining areas of squares within golden rectangles, 97-103
golden rectangle inscribed in, 87-89
golden section in a cross of congruent squares, 22425
solving Dodgson's missing area problem using the golden ratio, 221-24
square partitioned into four congruent trapezoids and a smaller square revealing golden ratio, 233-34
square with circle inscribed tangent to two sides revealing golden ratio, 229-33
used to create Cross of Lorraine, 225-29
use of to construct a golden segment, 24-27
using square inside a semicircle, 21-22
using three adjacent squares, 19-20
using two adjacent squares, 20-21
string, creating a golden, 249-52
Sully, James, 14

sunflowers, 265

tangent circles. See circles, tangent circles

terms used for golden section/golden ratio, 13-14, 16

golden ratio as term to refer to numerical value of Qﬁ See golden ratio golden section as term for
geometric division of a segment into ratio of Qﬁ See golden section tessellations, Penrose, 117-19
kites and darts, 119-21
tetrahedrons, 167, 174
as a self-dual, 174, 176
Timaeus (Plato), 167
Togo flag, 138
trapezoids
found in pentagons and pentagrams, 145
isosceles trapezoid

found in paper-folding exercise, 219

with an inscribed circle revealing golden ratio, 245-46, 326-28

in a pentagon, 217

partitioning isosceles and nonisosceles trapezoids producing golden section, 243-45



construction of, 325-26
square partitioned into four congruent trapezoids and a smaller square revealing golden ratio, 233-34
trees and fractals, 269-71
triangle inequality, 193
triangles
acute triangles, golden, 279-81
equilateral triangle
construction of, 155

inscribed equilateral triangle in an equilateral triangle revealing golden ratio, 191-93, 320-23

used to form hexagram, 197-99
use of to construct a golden segment, 22-24, 26-27
finding a golden rectangle along length of hypotenuse of a right triangle, 90

finding golden ratio in rectangle partitioned into four triangles, 235, 32324

finding golden ratio in triangles constructed with sides having lengths x", Xn+1, Xn+2, 191-93

finding the golden ratio between hypotenuse and shorter leg (Kepler triangle), 89-90
found in pentagons and pentagrams, 13940, 143, 144, 151-53
found within a golden rhombus, 113-14
golden triangles, 121-30
area of, 123-25, 132-35
in golden pyramids, 184
and golden radii of circles, 130-36
golden section of the sides of, 122-23
golden sequence, 12527

obtuse and acute golden triangles and fractals, 279-81

Heron's formula for area of a triangle, 134
isosceles triangle
area of, 123-25
found in fractals, 278
in golden sequence and Fibonacci-Lucas spiral, 125-30
as a golden triangle, 12123
and a pentagon, 157, 312-15
in a right pyramid, 24647
use of to construct a golden section, 24-25
obtuse triangles, golden, 279-81
and rectangular spiral
use of perpendiculars on a triangle to create, 247—49
right triangle
finding a golden rectangle along length of hypotenuse of, 90
finding the golden ratio between hypotenuse and shorter leg (Kepler triangle), 89-90



producing a right triangle with side lengths related to Qb, 235-37

using a right triangle with side lengths related to Qb to produce a rectangular “spiral,” 237-41

solid form of. See tetrahedrons

solving Dodgson's missing area problem using the golden ratio, 221-24

trigonometric functions, use of

additional trigonometric relationships in terms of a golden section, 316-19
analyzing a right triangle within rhombuses, 118-19

applied to the area of a golden triangle, 124-25

finding the length of the diagonal of a golden rectangle, 82-83

and radius of a pentagon with a circumscribed circle, 148

trigonometric functions and numerical representation of Qb’ 79

See also triangles, golden triangles

Uccello, Paolo, 187
urchin, 187

Van Iterson, G., 263, 266
Virahinka, 56

visible spirals and divergence angle of the real number A, 330-31

Vitruvian Man (drawing by da Vinci), 4647
Vogel’ H-: &_w

Walser, Hans, 32

X2 + x —1 =0 (golden equation), 15, 27, 43

Yee, A., 52

yin and yang symbol, golden sections in, 213—1

Zerger, Monte, 188
Zeus (Phidias statue of), 44
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