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Introduction

	

	

	
ew	mathematical	concepts,	if	any,	have	an	impact	on	as	many	aspects	of
our	visual	and	intellectual	lives	as	the	golden	ratio.	In	the	simplest	form,
the	 golden	 ratio	 refers	 to	 the	 division	 of	 a	 given	 line	 segment	 into	 a

unique	ratio	that	gives	us	an	aesthetically	pleasing	proportion.	This	proportion	is
formed	in	the	following	way:	The	longer	segment	(L)	is	to	the	shorter	segment
(S)	as	the	entire	original	segment	(L+S)	is	to	the	longer	segment.	Symbolically,
this	is	written	as	 .
Let	us	consider	a	rectangle	whose	length	is	L	and	whose	width	is	S,	and	whose

dimensions	 are	 in	 the	 golden	 ratio.	 We	 call	 this	 a	 golden	 rectangle,	 which
derives	its	name	from	the	apparent	beauty	of	its	shape:	a	view	supported	through
numerous	psychological	studies	in	a	variety	of	cultures.	The	shape	of	the	golden
rectangle	can	be	found	in	many	architectural	masterpieces	as	well	as	in	famous
classical	works	of	art.
When	the	golden	ratio	 is	viewed	in	 terms	of	 its	numerical	value,	 it	seems	to

infiltrate	 just	 about	 every	 aspect	 of	 mathematics.	 We	 have	 selected	 those
manifestations	of	the	golden	ratio	that	allow	the	reader	to	appreciate	the	beauty
and	power	of	mathematics.	 In	 some	cases,	our	endeavors	will	open	new	vistas
for	 the	 reader;	 in	 other	 cases,	 they	 will	 enrich	 the	 reader's	 understanding	 and
appreciation	 for	areas	of	mathematics	 that	may	not	have	been	considered	 from
this	unusual	vantage	point.	For	example,	 the	golden	ratio	 is	a	value,	frequently
referred	to	by	the	Greek	letter	 	(phi),	which	has	the	unique	characteristic	in	that
it	 differs	 from	 its	 reciprocal	 by	 1,	 that	 is,	 .	 This	 unusual	 characteristic
leads	 to	 a	 plethora	 of	 fascinating	 properties	 and	 genuinely	 connects	 	 to	 such
familiar	topics	as	the	Fibonacci	numbers	and	the	Pythagorean	theorem.
In	 the	 field	 of	 geometry,	 the	 applications	 of	 the	 golden	 ratio	 are	 practically

boundless,	as	are	 their	beauty.	To	 fully	appreciate	 their	visual	aspects,	we	will
take	 you	 through	 a	 journey	 of	 geometric	 experiences	 that	 will	 include	 some
rather	 unusual	ways	 of	 constructing	 the	 golden	 ratio,	 as	well	 as	 exploring	 the
many	surprising	geometric	figures	into	which	the	golden	ratio	is	embedded.	All
this	requires	of	the	reader	is	to	be	merely	fortified	with	nothing	more	than	some



elementary	high	school	geometry.
Join	 us	 now	 as	 we	 embark	 on	 our	 journey	 through	 the	 many	 wonderful

appearances	 of	 the	 golden	 ratio,	 beginning	 with	 a	 history	 of	 these	 sightings
dating	 from	 before	 2560	 BCE	 all	 the	 way	 to	 the	 present	 day.	 We	 hope	 that
throughout	this	mathematical	excursion,	you	will	get	to	appreciate	the	quotation
by	 the	 famous	 German	 mathematician	 and	 scientist	 Johannes	 Kepler	 (1571–
1630),	who	said,	“Geometry	harbors	two	great	treasures:	One	is	the	Pythagorean
theorem,	and	the	other	is	the	golden	ratio.	The	first	we	can	compare	with	a	heap
of	gold,	and	the	second	we	simply	call	a	priceless	jewel.”1	This	“priceless	jewel”
will	 enrich,	 entertain,	 and	 fascinate	 us,	 and	 perhaps	 open	 new	 doors	 to
unanticipated	vistas.



Chapter	1

Defining	and	Constructing
the	Golden	Ratio

As	with	any	new	concept,	we	must	first	begin	by	defining	the	key	elements.	To
define	the	golden	ratio,	we	first	must	understand	that	the	ratio	of	two	numbers,
or	 magnitudes,	 is	 merely	 the	 relationship	 obtained	 by	 dividing	 these	 two
quantities.	When	we	have	a	ratio	of	1:3,	or	 ,	we	can	conclude	that	one	number
is	 one-third	 the	 other.	 Ratios	 are	 frequently	 used	 to	 make	 comparisons	 of
quantities.	One	ratio	stands	out	among	the	rest,	and	that	is	the	ratio	of	the	lengths
of	 the	 two	 parts	 of	 a	 line	 segment	 which	 allows	 us	 to	 make	 the	 following
equality	of	two	ratios	(the	equality	of	two	ratios	is	called	a	proportion):	that	the
longer	 segment	 (L)	 is	 to	 the	 shorter	 segment	 (S)	as	 the	entire	original	 segment
(L+S)	 is	 to	 the	 longer	 segment	 (L).	 Symbolically,	 this	 is	 written	 as	 .
Geometrically,	 this	 may	 be	 seen	 in	 figure	 1-1:	

This	is	called	the	golden	ratio	or	the	golden	section—in	the	latter	case	we	are
referring	to	the	“sectioning”	or	partitioning	of	a	line	segment.	The	terms	golden
ratio	and	golden	section	were	first	introduced	during	the	nineteenth	century.	We
believe	that	the	Franciscan	friar	and	mathematician	Fra	Luca	Pacioli	(ca.	1445–
1514	or	1517)	was	the	first	to	use	the	term	De	Divina	Proportione	(The	Divine
Proportion),	as	the	title	of	a	book	in	1509,	while	the	German	mathematician	and
astronomer	 Johannes	 Kepler	 (1571–1630)	 was	 the	 first	 to	 use	 the	 term	 sectio
divina	 (divine	 section).	 Moreover,	 the	 German	 mathematician	 Martin	 Ohm
(1792–1872)	 is	 credited	 for	 having	 used	 the	 term	 Goldener	 Schnitt	 (golden
section).	In	English,	this	term,	golden	section,	was	used	by	James	Sully	in	1875.1
You	may	be	wondering	what	makes	this	ratio	so	outstanding	that	it	deserves

the	title	“golden.”	This	designation,	which	it	richly	deserves,	will	be	made	clear
throughout	this	book.	Let's	begin	by	seeking	to	find	its	numerical	value,	which



will	bring	us	to	its	first	unique	characteristic.
To	determine	 the	numerical	 value	of	 the	golden	 ratio	 	we	will	 change	 this

equation	 	or	 	to	its	equivalent,	when	 ,	to	get2:	 .
We	can	now	solve	this	equation	for	x	using	the	quadratic	formula,	which	you

may	 recall	 from	 high	 school.	 (The	 quadratic	 formula	 for	 solving	 for	 x	 in	 the
general	quadratic	equation	ax2	+	bx	+	c	=	0	is	 .	See	the	appendix	for
a	derivation	of	this	formula.)	We	then	obtain	the	numerical	value	of	the	golden

ratio:	
which	is	commonly	denoted	by	the	Greek	letter,	phi3:	 .

Notice	 what	 happens	 when	 we	 take	 the	 reciprocal	 of	 ,	 namely	 :	

which	 when	 we	 multiply	 by	 1	 in	 the	 form	 of	 ,	 we	 get	

	
But	at	this	point	you	should	notice	a	very	unusual	relationship.	The	value	of	

and	 	differ	by	1.	That	is,	 .	From	the	normal	relationship	of	reciprocals,

the	product	of	 	and	 	is	also	equal	to	1,	that	is,	 .	Therefore,	we	have	two
numbers,	 	 and	 ,	whose	 difference	 and	 product	 is	 1—these	 are	 the	 only	 two
numbers	 for	 which	 this	 is	 true!	 By	 the	 way,	 you	 might	 have	 noticed	 that	



We	will	often	refer	to	the	equations	x2	–	x	–	1	=	0	and	x2	+	x	–	1	=	0	during	the
course	of	this	book	because	they	hold	a	central	place	in	the	study	of	the	golden
ratio.	For	those	who	would	like	some	reinforcement,	we	can	see	that	the	value	
satisfies	 the	 equation	 x2	 –	 x	 –	 1	 =	 0,	 as	 is	 evident	 here:	

The	other	solution	of	this	equation	is

while	 – 	 satisfies	 the	 equation	 x2	 +	 x	 –	 1	 =	 0,	 as	 you	 can	 see	 here:	

The	other	solution	to	this	equation	is	 .

Having	 now	 defined	 the	 golden	 ratio	 numerically,	 we	 shall	 construct	 it
geometrically.	There	are	 several	ways	 to	construct	 the	golden	section	of	a	 line
segment.	You	may	notice	that	we	appear	to	be	using	the	terms	golden	ratio	and
golden	section	interchangeably.	To	avoid	confusion,	we	will	use	the	term	golden
ratio	to	refer	to	the	numerical	value	of	 	and	the	term	golden	section	to	refer	to
the	geometric	division	of	a	segment	into	the	ratio	 .

GOLDEN	SECTION	CONSTRUCTION	1

Our	 first	 method,	 which	 is	 the	 most	 popular,	 is	 to	 begin	 with	 a	 unit	 square
ABCD,	with	midpoint	M	 of	 side	AB,	 and	 then	 draw	 a	 circular	 arc	with	 radius
MC,	cutting	the	extension	of	side	AB	at	point	E.	We	now	can	claim	that	the	line
segment	AE	is	partitioned	into	the	golden	section	at	point	B.	This,	of	course,	has
to	be	substantiated.



To	verify	this	claim,	we	would	have	to	apply	the	definition	of	the	golden	section:
,	 and	 see	 if	 it,	 in	 fact,	 holds	 true.	 Substituting	 the	 values	 obtained	 by

applying	the	Pythagorean	theorem	to	ΔMBC	as	shown	in	figure	1-2,	we	get	the

following:	
It	follows	that

,	and

	
We	then	can	find	the	value	of	 ,	that	is,

which	turns	out	to	be	a	true	proportion,	since	the	cross	products	are	equal.	That
is,



	
We	 can	 also	 see	 from	 figure	 1-2	 that	 point	 B	 can	 be	 said	 to	 divide	 the	 line
segment	 AE	 into	 an	 inner	 golden	 section,	 since	

Meanwhile,	 point	E	 can	 be	 said	 to	 divide	 the	 line	 segment	AB	 into	 an	 outer

golden	section,	since	
	
You	ought	to	take	notice	of	the	shape	of	the	rectangle	AEFD	in	figure	1-2.	The

ratio	of	the	length	to	the	width	is	the	golden	ratio:	
	
This	appealing	shape	is	called	the	golden	rectangle,	which	will	be	discussed	in
detail	in	chapter	4.

GOLDEN	SECTION	CONSTRUCTION	2

Another	method	for	constructing	the	golden	section	begins	with	the	construction
of	a	right	triangle	with	one	leg	of	unit	 length	and	the	other	twice	as	long,	as	is
shown	in	figure	1-3.4	Here	we	will	partition	the	line	segment	AB	into	the	golden
ratio.	 The	 partitioning	 may	 not	 be	 obvious	 yet,	 so	 we	 urge	 readers	 to	 have
patience	until	we	reach	the	conclusion.



With	AB	=	2	and	BC	=	1,	we	apply	the	Pythagorean	theorem	to	ΔABC.	We	then
find	that	 .	With	the	center	at	point	C,	we	draw	a	circular	arc
with	radius	1,	cutting	line	segment	AC	at	point	F.	Then	we	draw	a	circular	arc
with	the	center	at	point	A	and	the	radius	AF,	cutting	AB	at	point	P.
Because	 ,	 we	 get	 .	 Therefore,	

.

To	 determine	 the	 ratio	 ,	we	will	 set	 up	 the	 ratio	 ,	 and	 then	 to	make
some	sense	of	it,	we	will	rationalize	the	denominator	by	multiplying	the	ratio	by

1	in	the	form	of	 .
	
	

We	then	find	that

	
which	is	the	golden	ratio!	Therefore,	we	find	that	point	P	cuts	the	line	segment
AB	into	the	golden	ratio.

GOLDEN	SECTION	CONSTRUCTION	3

We	have	yet	another	way	of	constructing	the	golden	section.	Consider	the	three
adjacent	unit	squares	shown	in	figure	1-4,.	We	construct	the	angle	bisector	of	
BHE.	There	is	a	convenient	geometric	relationship	that	will	be	very	helpful	to	us
here;	 that	 is,	 that	 the	angle	bisector	 in	a	 triangle	divides	 the	side	 to	which	 it	 is
drawn	proportionally	to	the	two	sides	of	the	angles	being	bisected.5	In	figure	1-4
we	 then	 derive	 the	 following	 relationship:	 .	 Applying	 the	 Pythagorean
theorem	to	ΔHFE,	we	get	 .	We	can	now	evaluate	the	earlier	proportion

by	 substituting	 the	 values	 shown	 in	 figure	 1-4:	 ,	 from	 which	 we	 get	

,	which	is	the	reciprocal	of	 .

Therefore,	



Thus,	we	 can	 then	 conclude	 that	 point	B	 divides	 the	 line	 segment	AC	 into	 the

golden	 section,	 since	 ,	 the	 recognized	 value	 of	 the
golden	ratio.

GOLDEN	SECTION	CONSTRUCTION	4

Analogous	 to	 the	 previous	 construction	 is	 one	 that	 begins	with	 two	 congruent
squares	as	shown	in	figure	1-5.	A	circle	is	drawn	with	its	center	at	the	midpoint,
M,	of	the	common	side	of	the	squares,	and	a	radius	half	the	length	of	the	side	of
the	 square.	 The	 point	 of	 intersection,	C,	 of	 the	 circle	 and	 the	 diagonal	 of	 the
rectangle	determines	the	golden	section,	AC,	with	respect	to	a	side	of	the	square,
AD.

With	AD	=	1	and	DM	=	 ,	we	get	AM	=	 	by	applying	the	Pythagorean	theorem
to	 triangle	AMD.	 (See	 fig.	1-6.)	Since	CM	 is	also	a	 radius	of	 the	circle,	CM	=



DM	=	 .	We	can	then	conclude	that	

Furthermore,

We	have	thus	constructed	the	golden	section	and	its	reciprocal.

GOLDEN	SECTION	CONSTRUCTION	5

In	 this	 rather	 simple	 construction	we	will	 show	 that	 the	 semicircle	on	 the	 side
(extended)	 of	 a	 square,	 whose	 radius	 is	 the	 length	 of	 the	 segment	 from	 the
midpoint	of	the	side	of	the	square	to	an	opposite	vertex,	creates	a	line	segment
where	 the	 vertex	 of	 the	 square	 determines	 the	 golden	 ratio.	 In	 figure	 1-7,	 we
have	square	ABCD	and	a	semicircle	on	line	AB	with	center	at	the	midpoint	M	of
AB	 and	 radius	 CM.	 We	 encountered	 a	 similar	 situation	 with	 Construction	 1,
where	we	concluded	that	 	and	 .



However,	 here	 we	 have	 an	 extra	 added	 attraction:	DE	 and	BC	 partition	 each
other	into	the	golden	section	at	point	P.	This	is	easily	justified	in	that	 triangles
DPC	and	EBP	are	similar	and	their	corresponding	sides,	DC	and	BE,	are	in	the
golden	 ratio.	Hence,	 all	 the	 corresponding	 sides	 are	 in	 the	golden	 ratio,	which
here	is	

GOLDEN	SECTION	CONSTRUCTION	6

Some	of	the	constructions	of	the	golden	section	are	rather	creative.6	Consider	the
inscribed	equilateral	triangle	ABC	with	line	segment	PT	bisecting	the	two	sides
of	the	equilateral	triangle	at	points	Q	and	S	as	shown	in	figure	1-8.



We	 will	 let	 the	 side	 length	 of	 the	 equilateral	 triangle	 equal	 2,	 which	 then
provides	us	with	the	segment	lengths	as	shown	in	figure	1-8.	The	proportionality
there	 gives	 us	 	 which	 then	 by	 substituting	 appropriate	 values	 yields	

	and	so	RS	=	 .
A	useful	geometric	theorem	will	enable	us	to	find	the	length	of	the	segments

PQ	 =	 ST	 =	 x	 due	 to	 the	 symmetry	 of	 the	 figure.	 The	 theorem	 states	 that	 the
products	of	the	segments	of	two	intersecting	chords	of	a	circle	are	equal.	From

that	theorem,	we	find	
Therefore,	the	segment	QT	is	partitioned	into	the	golden	section	at	point	S,	since

	
which	 we	 recognize	 as	 the	 value	 of	 the	 golden	 ratio.	We	 can	 generalize	 this



construction	by	saying	that	the	midline	of	an	equilateral	triangle	extended	to	the
circumcircle	is	partitioned	into	the	golden	section	by	the	sides	of	the	equilateral
triangle.

GOLDEN	SECTION	CONSTRUCTION	7

This	 is	 a	 rather	 easy	 construction	of	 the	golden	 ratio	 in	 that	 it	 simply	 requires
constructing	 an	 isosceles	 triangle	 inside	 a	 square	 as	 shown	 in	 figure	 1-9.	 The
vertex	E	of	ΔABE	 lies	on	side	DC	of	square	ABCD,	and	altitude	EM	 intersects
the	 inscribed	circle	of	ΔABE	at	point	H.	The	golden	ratio	appears	 in	 two	ways
here.	First,	when	the	side	of	the	square	is	2,	then	the	radius	of	the	inscribed	circle
r	=	 ,	and	second	when	the	point	H	partitions	EM	into	the	golden	ratio	as	
.

To	 justify	 this	construction,	we	will	 let	 the	side	of	 the	square	have	 length	2.
This	gives	us	BM	=	1	and	EM	=	2.	Then,	with	the	Pythagorean	theorem	applied
to	 triangle	 MEB,	 we	 derive	 ,	 whereupon	 we	 recognize	 that	

	(fig.	1-10).7



For	the	second	appearance,	again	we	apply	the	Pythagorean	theorem,	this	time	to
ΔEGI,	 giving	 us	 EI2	 =	 GI2	 +	 GE2.	 Put	 another	 way,	 ;
therefore,	 .	This	determines	 the	 length	of	 the	 radius

of	the	inscribed	circle	
Now,	with	some	simple	substitution,	we	have	EM	=	2	and	HM	=	2r,	yielding	the

ratio	 .

GOLDEN	SECTION	CONSTRUCTION	8

A	somewhat	more	contrived	construction	also	yields	the	golden	section	of	a	line
segment.	To	do	this,	we	will	construct	a	unit	square	with	one	vertex	placed	at	the
center	of	a	circle	whose	radius	is	the	length	of	the	diagonal	of	the	square.	On	one
side	 of	 the	 square	 we	 will	 construct	 an	 equilateral	 triangle.	 This	 is	 shown	 in
figure	1-11.



Again	applying	the	Pythagorean	theorem	to	triangle	ACD,	we	get	 the	radius	of
the	 circle	 as	 ,	 which	 gives	 us	 the	 lengths	 of	AD,	AG,	 and	AJ.	 Because	 of
symmetry,	 we	 have	 BH	 =	 CF	 =	 x.	 Again	 applying	 the	 theorem	 involving
intersecting	 chords	 of	 a	 circle	 (as	 in	 Construction	 6),	 we	 get	 the	 following:	

Once	again	we	find	the	segment	BF	is	partitioned	into	the	golden	section	at	point
C,	since
	
	

,	 which	 we	 recognize	 as	 the	 value	 of	 the
golden	ratio.

GOLDEN	SECTION	CONSTRUCTION	9

We	can	derive	 the	equation	x2	+	x	–	1	=	0,	 the	so-called	golden	equation,	 in	a
number	of	other	ways,	one	of	which	involves	constructing	a	circle	with	a	chord
AB,	which	is	extended	to	a	point	P	so	that	when	a	tangent	from	P	is	drawn	to	the



circle,	its	length	equals	that	of	AB.	We	can	see	this	in	figure	1-12,	where	PT	=
AB	=	1.

Here	 we	 will	 apply	 a	 geometric	 theorem	 which	 states	 that	 when,	 from	 an
external	 point,	P,	 a	 tangent	 (PT)	 and	 a	 secant	 (PB)	 are	 drawn	 to	 a	 circle,	 the
tangent	 segment	 is	 the	 mean	 proportional	 between	 the	 entire	 secant	 and	 the
external	 segment,	 that	 is,	 .	This	yields	PT2	=	PB	 ·	PA,	or	PT2	=	 (PA	+
AB)	·	PA.	If	we	let	PA	=	x,	then	12	=	(x	+	1)x,	or	x2	+	x	–	1	=	0,	and,	as	before,
we	can	conclude	that	point	A	determines	the	golden	section	of	line	segment	PB,
since	the	solution	to	this	equation	is	the	golden	ratio.
The	next	method	we	present	is	a	bit	convoluted.	Yet,	it	begins	with	the	famous

3-4-5	 right	 triangle	—	 probably	 one	 of	 the	 earliest	 to	 be	 recognized	 as	 a	 true
right	triangle,	going	back	to	the	so-called	rope-stretchers	of	ancient	Egypt.8

GOLDEN	SECTION	CONSTRUCTION	10

In	 figure	 1-13	 we	 have	 the	 3-4-5	 right	 triangle	 ABC.	 The	 bisector	 of	 ABC
intersects	side	AC	at	point	G.	With	G	as	its	center,	a	circle	of	radius	GC	is	drawn
and	can	be	shown	to	be	tangent	to	both	BC	and	AB.



	
As	we	 noted	 earlier,	 the	 bisector	 of	 an	 angle	 of	 a	 triangle	 divides	 the	 side	 to
which	it	is	drawn	proportionally	to	the	angle's	two	sides.	Therefore,	
or	 GC.
With	 AG	 +	 GC	 =	 4,	 we	 get	 .	 So	 we	 can

determine	that	 .
GC	 =	GD	 =	GE	 =	GF	 are	 radii	 of	 the	 circle,	 so	we	 then	 have	 ,	 and	

.	 Applying	 the	 Pythagorean	 theorem	 to	 ΔGBC,	 we	
.	Therefore,	 .

We	are	now	ready	to	show	that	the	point	E	partitions	the	line	segment	BF	into
the	golden	ratio:

which	by	now	is	easily	recognizable	as	the	golden	ratio.
A	similar	construction	with	a	3-4-5	right	 triangle	was	discovered	by	Gabries

Bosia	while	pondering	the	knight's	moves	in	chess.9
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In	figure	1-14,	we	see	 three	concentric	circles	with	radii	of	 lengths	1,	2,	and	4
units,	respectively.	PR	is	tangent	to	the	inner	circle	at	T	and	cuts	the	other	circles
at	points	P,	Q,	and	R.

With	AM	=	AB	=	1	and	BC	=	2,	we	apply	the	Pythagorean	theorem	to	ΔMQT	and
ΔMRT,	and	get	 ,	and	 .
As	 we	 have	 ,	 and	

,	we	derive

which	is	again	recognizable	as	the	golden	ratio.

GOLDEN	SECTION	CONSTRUCTION	12

We	have	yet	another	way	of	constructing	the	golden	section,	this	time	with	three
circles.	Consider	the	three	adjacent	congruent	circles	with	radius	r	=	1,	as	shown
in	figure	1-15.



In	figure	1-15,	we	have	AE	=	2	and	BE	=	4.	We	apply	the	Pythagorean	theorem
to	ΔABE	to	get	 .	Because	of	the	symmetry,	AC	=	BD
and	CD	 =	 2,	 we	 then	 have	AB	 =	AC	 +	CD	 +	BD	 =	 2AC	 +	BD	 =	 2AC	 +	 2.
Therefore,	 .	 It	 then	 follows	 that	 	 and	

.

The	ratio	 	again	denotes	the	golden	ratio.
	
You	may	 notice	 that	 each	 time	 we	 have	 been	 using	 a	 unit	 measure	 as	 our

basis.	We	could	have	used	a	variable,	such	as	x,	and	we	would	have	gotten	the
same	result;	however,	using	1	rather	than	x	is	just	a	bit	simpler.

GOLDEN	SECTION	CONSTRUCTION	13

When	we	place	the	three	equal	unit	circles	tangent	to	each	other	and	tangent	to
the	 semicircle,	 as	 shown	 in	 figure	 1-16,	 we	 have	 the	 makings	 for	 another
construction	of	the	golden	section.



First,	we	note	that	AM	=	BM	=	JM	=	KM	=	LM	=	R,	and	GH	=	GM	=	CE	=	DF
(=	r)	=	1	(and	also	CM	=	DM	=	EG	=	FG	=	2)	and	EM	=	R	–	r	=	R	–	1.	When	we
apply	the	Pythagorean	theorem	to	ΔCEM	 in	figure	1-16,	we	get	EM2	=	CM2	+
CE2,	or	(R	–	1)2	=	22	+	12.
When	we	solve	this	equation	for	R,	we	get

Since	a	radius	cannot	be	negative,	we	only	use	the	positive	root	of	R;	therefore,	
.

We	 then	 take	 the	 ratio	 .	Yet,	half	 this	 ratio	will	give	us	 the	golden
ratio:

Therefore,	
	
Additionally,	 the	 ratios	 	 and	 	 also	 produce	 the	 golden	 ratio,	 since	with	

	 which	 then	 gives	 us	
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Another	construction	of	 the	golden	section	was	popularized	by	Hans	Walser,10
who	placed	the	three	circles	on	a	coordinate	grid	as	shown	in	figure	1-17.	This
construction	 can	 be	 further	 expanded	 as	 we	 show	 here.	 A	 circle	 with	 radius
length	1	is	enclosed	by	two	circles	of	radius	length	3.

With	AE	=	EF	=	GH	=	3	and	BC	=	2,	we	can	find	the	length	of	AM	by	applying
the	 Pythagorean	 theorem	 to	 ΔAEM,	 whereupon	 AM	 =	 .	 Since	

	then	we	can	establish

which	is	again	recognizable	as	the	golden	ratio.
	
Also,	the	ratio	 	demonstrates	the	golden	section:



	
We	now	present	the	classic	construction	of	the	golden	section	based	on	the	work
of	 Euclid,	 which	 is	 a	 pleasant	 variation	 of	 the	 first	 construction	 we	 offered.
Perhaps	 one	 of	 the	 greatest	 contributions	 to	 our	 knowledge	 of	mathematics	 is
Elements	 by	 Euclid,	 a	 work	 divided	 into	 thirteen	 books	 that	 covers	 plane
geometry,	arithmetic,	number	theory,	irrational	numbers,	and	solid	geometry.	It
is,	in	fact,	a	compilation	of	the	knowledge	of	mathematics	that	existed	up	to	his
time,	approximately	300	BCE.	We	have	no	records	of	the	dates	of	Euclid's	birth
and	death,	and	 little	 is	known	about	his	 life,	 though	we	do	know	 that	he	 lived
during	 the	 reign	 of	 Ptolemy	 I	 (305–285	 BCE)	 and	 taught	 mathematics	 in
Alexandria,	 now	 Egypt.	 We	 conjecture	 that	 he	 attended	 Plato's	 Academy	 in
Athens,	 studying	 mathematics	 from	 Plato's	 students,	 and	 later	 traveled	 to
Alexandria.	At	the	time,	Alexandria	was	the	home	to	a	great	library	created	by
Ptolemy,	 known	as	 the	Museum.	 It	 is	 believed	 that	Euclid	wrote	 his	Elements
there	since	that	city	was	also	the	center	of	the	papyrus	industry	and	book	trade.
To	date,	Elements,	after	over	one	thousand	editions,	presents	synthetic	proofs	for
his	 propositions	 and	 thereby	 set	 a	 standard	 of	 logical	 thinking	 that	 impressed
many	of	the	greatest	minds	of	our	civilization.	Notable	among	them	is	Abraham
Lincoln,	who	carried	a	copy	of	Elements	with	him	as	a	young	lawyer	and	would
study	 the	 presented	 propositions	 on	 a	 regular	 basis	 to	 benefit	 from	 its	 logical
presentations.
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So	now	we	come	to	Euclid's	construction	of	the	golden	section.	In	figure	1-18,	a
right	triangle,	ΔABC,	is	constructed	with	legs	of	length	1	and	 .	An	arc	is	drawn
with	center	C	and	radius	of	length	BC,	and	AC	is	extended	to	point	D.	A	second
arc	is	drawn	with	center	A	and	tangent	to	the	first	arc,	naturally	passing	through

point	D.	Using	 the	Pythagorean	 theorem,	we	can	 see	 that	 ;	we	will	 let
the	length	of	AD	be	x.



	
This	sets	up	the	ratio

	
which	is	again	recognizable	as	the	golden	ratio.
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The	last	in	our	collection	of	constructions	of	the	golden	section	is	one	that	may
look	a	bit	overwhelming	but	actually	is	very	simple,	as	it	uses	only	a	compass!



All	we	need	is	to	draw	five	circles.11

In	figure	1-19,	we	begin	by	constructing	circle	c1	with	center	M1	and	radius	r1	=
r.	Then,	with	a	randomly	selected	point	M2	on	circle	c1,	we	construct	a	circle,	c2,
with	center	M2	and	radius	r2	=	r;	naturally	M1M2	=	r.	We	indicate	the	points	of
intersection	of	the	two	circles,	c1	and	c2,	as	A	and	B.	Constructing	circle	c3	with
center	B	 and	 radius	AB	=	r3	will	 intersect	circles	c1	 and	c2	 at	points	C	 and	D.
(Note	that	the	points	D,	M1,	M2,	and	C	are	collinear.)	We	now	construct	circle	c4
with	center	at	M1	and	radius	M1C	=	r4	=	2r.	Finally,	circle	c5	with	center	M2	and
radius	M2	D	=	r5	=	r4	=	2r	is	constructed	so	that	it	intersects	circle	c4	at	points	E
and	F.



From	figure	1-20,	as	a	 result	of	obvious	symmetry,	AE	=	BF,	AF	=	BE,	AM	=
BM,	EM	=	FM,	and	CM	=	DM,	MM1	=	MM2.	We	can	 then	get	 	 (or

analogously,	 ).
This	 can	 be	 justified	 rather	 simply	 by	 inserting	 a	 few	 line	 segments.	 The

radius	of	the	first	circle	is	r1	=	r	=	AM1,	and	the	radius	of	the	fourth	circle	is	r4	=
2r	=	CM1	=	EM1.	We	can	apply	the	Pythagorean	theorem	to	ΔAMM1	to	get	AM1

2

=	AM2	+	MM1
2,	or

which	then	determines	 .	Then,	applying	the	Pythagorean	theorem	to

ΔEMM1,	we	get	EM1
2	(=	CM1

2)	=	EM2	+	MM1
2,	or	

whereupon	 .
We	now	seek	 to	 show	 that	 the	 ratio	we	asserted	above	 is	 in	 fact	 the	golden

ratio.



Now	the	second	ratio	that	we	must	check	is

In	both	cases	we	have	shown	that	 the	golden	ratio	 is	 in	fact	determined	by	 the
five	circles	we	constructed.
We	should	not	want	to	give	the	impression	that	we	have	covered	all	possible

constructions	 of	 the	 golden	 section.	 There	 currently	 exist	 about	 forty	 such
constructions	 of	 the	 golden	 section—with	 new	 methods	 being	 developed
continually.	 As	 we	 mentioned,	 there	 exist	 a	 host	 of	 curious	 geometric
configurations	where	the	golden	section	can	be	found,	but	we	shall	 leave	these
hiding	 places	 for	 later	 in	 the	 book.	 Notice,	 however,	 that	 our	 goal	 for
construction	of	 the	golden	section	is	 to	somehow	get	a	 length	equal	 to	 .	For
now,	we	simply	want	to	introduce	the	numerical	value	of	the	golden	ratio	and	its
sightings	 algebraically	 and	 geometrically,	 as	 it	 can	 be	 seen	 partitioning	 a	 line
segment.



Chapter	3

The	Numerical	Value
of	the	Golden	Ratio
and	Its	Properties

In	the	previous	chapters,	we	have	established	that	the	golden	ratio	between	a	and
b	is	 ,	where	a	and	b	are	positive	real	numbers.	As	with	all	ratios,	this	one
has	a	very	specific	numerical	value.	To	get	the	numerical	value	of	this	ratio,	we
first	must	set	up	the	equation	that	we	get	from	this	ratio	by	equating	the	product
of	the	means	and	extremes,	namely	b2	=	a	(a	+	b)	=	a2	+	ab.	This	equation	can
be	written	as	b2	–	ab	–	a2	=	0	and	can	be	solved	for	either	a	or	b;	say,	we	solve
for	 b.	 Using	 the	 formula	 for	 solving	 quadratic	 equations,1	 we	 find	 that	

Since	a	length	(a,	b)	cannot	be	negative,	we	ignored	the	negative	root

Therefore,	by	dividing	both	sides	of	this	equation	by	a,	we	get

which	 is	 then	 the	 value	 of	 the	 golden	 ratio,	 .	 Numerically,	 this	 is

approximately2	equal	to:	
	
≈1.6180339887498948482045868343656381177203091798057628621
354486227052604628189024497072072041893911374847540880753
868917521266338622235369317931800607667263544333890865959
3958290563832266131992829026788067520876689250171169620703



2221043216269548626296313614438149758701220340805887954454
749246185695364864449241044320771344947049565846788509874
3394422125448770664780915884607499887124007652170575179788
34166256249407589069704000281210427621771117778053153171410
11704666599146697987317613560067087480710131795236894275219
484353056783002287856997829778347845878228911097625003026
9615617002504643382437764861028383126833037242926752631165
33924731671112115881863851331620384005222165791286675294654
90681131715993432359734949850904094762132229810172610705961
164562990981629055520852479035240602017279974717534277759
27786256194320827505131218156285512224809394712341451702237
358057727861600868838295230459264787801788992199027077690
38953219681986151437803149974110692608867429622675756052317
2777520353613936,	which	we	approximate	to	1.61803.
	

Now	 if	 we	 take	 the	 reciprocal	 of	 	 to	 get	 	 and	 then

multiply	 this	 fraction	 by	 1	 in	 the	 form	 of	 ,	 we	 get	

,	 which	 then	 gives	 us	 the	 approximate	 value3:	

≈.61803398874989484820458683436563811772030917980576286213
544862270526046281890244970720720418939113748475408807538
689175212663386222353693179318006076672635443338908659593
9582905638322661319928290267880675208766892501711696207032
2210432162695486262963136144381497587012203408058879544547
492461856953648644492410443207713449470495658467885098743
3944221254487706647809158846074998871240076521705751797883
416625624940758906970400028121042762177111777805315317141011
7046665991466979873176135600670874807101317952368942752194
843530567830022878569978297783478458782289110976250030269
6156170025046433824377648610283831268330372429267526311653
39247316711121158818638513316203840052221657912866752946549
06811317159934323597349498509040947621322298101726107059611



645629909816290555208524790352406020172799747175342777592
77862561943208275051312181562855122248093947123414517022373
580577278616008688382952304592647878017889921990270776903
89532196819861514378031499741106926088674296226757560523172
777520353613936,	which	we	approximate	to	0.61803.
We	see	 that	 the	value	of	 	has	a	unique	characteristic.	Aside	 from	the	usual

fact	 that	 the	product	of	a	number	and	its	 reciprocal	 is	1,	which,	here,	gives	us	
,	 the	 difference	 of	 	 and	 its	 reciprocal,	 ,	 is	 surprisingly	 also	 1,	 that	 is,	
.	This	is	the	only	number	for	which	this	is	true!

The	not-too-well-known	mathematician	Michael	Maestlin	 (1550–1631),	who
happened	to	be	one	of	Johannes	Kepler's	teachers	and	later	his	friend,	is	credited
with	 the	 first	 expansion	 of	 the	 value	 of	 	 to	 a	 five-place	 accuracy,	 as	 ≈
1.6180340,	 in	 1597,	while	 at	 the	University	 of	 Tübingen	 (Germany).	As	with
most	 famous	numbers	 in	mathematics,	 there	 is	 always	 a	 desire	 to	 seek	greater
accuracy	 of	 a	 value.	 This	 means	 calculating	 the	 value	 to	 a	 larger	 number	 of
decimal	 places.	 Naturally,	 today	 we	 can	 use	 computers	 to	 facilitate	 this	 goal;
here	is	a	short	history	of	these	milestones	of	the	recent	past.

	
Having	now	established	 the	numerical	value	of	 the	golden	 ratio,	 let	 us	 inspect
some	of	 the	properties	of	 this	most	unusual	number.	We	begin	by	considering
the	 irrationality	 of	 .	 To	 do	 this,	 we	 will	 embark	 on	 a	 nifty	 little	 excursion
through	some	simple	number	theory.	The	realm	of	real	numbers	is	composed	of
rational	and	irrational	numbers.	They	can	be	either	positive	or	negative.	When
expressed	in	decimal	form,	the	rational	numbers	are	either	terminating	decimals



or	 repeating	 decimals,	 while	 the	 irrational	 numbers	 do	 not	 repeat	 with	 any
repeating	pattern	and	continue	indefinitely.	Another	way	of	distinguishing	these
numbers	 is	 that	 only	 the	 rational	 numbers	 can	 be	 expressed	 as	 quotients	 of
integers.
Here	are	some	examples:

	

	
	
We	claim	that	the	number	 	is	an	irrational	number—one	that	has	an	unending
decimal	 value—one	 that	 has	 no	 repeating	 pattern.	We	 can	 establish	 that	 	 is
irrational	and	therefore

would	also	be	 irrational.	To	prove	that	 	 is	 irrational,	we	begin	by	supposing
the	 contrary,	 namely	 that	 	 is	 rational,	 implying	 that	 ,	 a	 fraction	 that
may	 be	 assumed	 to	 be	 in	 lowest	 terms.	 Squaring	 both	 sides	 and	 clearing
denominators,	 we	 get	 5q2	 =	 p2.	 Thus	 the	 left-hand	 side	 is	 divisible	 by	 5	 and
therefore	so	 is	 the	right-hand	side.	But	5	 is	a	prime.	Therefore,	since	5	divides
p2,	it	must	also	divide	p.	Thus,	p	=	5r,	for	some	r.	Then	we	have	5q2	=	p2	=	25r2,
so	that	q2	=	5r2.	Repeating	the	previous	argument,	we	find	that	q	is	also	divisible
by	 5,	 contradicting	 our	 assumption	 that	 the	 fraction	 was	 in	 lowest	 terms.
Therefore,	 	is	not	rational.	Thus,	 	must	then	be	an	irrational	number.
As	we	will	see	in	chapter	4,	the	irrationality	of	 	will	be	realized	by	the	fact

that	 the	 diagonal	 of	 a	 regular	 pentagon	 is	 incommensurate	 with	 a	 side	 of	 the
pentagon,	 which	 means	 they	 have	 no	 common	 measure.	 Similarly,	 the
irrationality	 of	 π	 is	 seen	 by	 the	 fact	 that	 the	 diameter	 of	 a	 circle	 and	 its
circumference	have	no	common	measure.
We	continue	by	considering	the	powers	of	 .	To	do	so,	we	first	must	find	the

value	of	 2	in	terms	of	 .



Since

	
You	 may	 find	 this	 equation	 2	 =	 	 +	 1	 somewhat	 familiar,	 as	 we	 have
encountered	it	at	several	points	already.	From	this	equation,	we	can	generate	an
interesting	mathematical	expression	to	express	the	value	of	 	 in	a	very	unusual
fashion.	By	taking	the	square	root	of	both	sides,	this	equation	can	be	rewritten	as

.	We	will	 now	 replace	 	 under	 the	 radical	 sign	with	 its

equivalent	 	to	get	
Then,	repeating	this	process	(i.e.,	replacing	the	last	 	with	 ),	we	get

Continuing	this	process	gives	us

and	so	on,	until	you	 realize	 that	 this	will	go	on	 to	 infinity	and	 look	something
like

Suppose	we	now	consider	the	following	analogous	nest	of	radicals:



We	can	evaluate	 this	value	for	x	by	using	the	following	technique:	There	 is	an
infinite	 number	 of	 radicals	 in	 this	 nest.	 Without	 loss	 of	 accuracy,	 we	 can
temporarily	“ignore”	the	outermost	radical	and	see	that	the	remaining	expression
is	actually	the	same	as	the	original	one:

	
So	if	we	substitute	this	value	of	x	into	the	original	expression,	we	get	 .
By	squaring	both	sides,	we	get	the	following	quadratic	equation:	x2	=	1	–	x,	or	x2
+	 x	 –	 1	 =	 0.	 When	 we	 apply	 the	 quadratic	 formula	 to	 this	 equation,	 we	 get

(ignoring	the	negative	root)	
which	 is	 .	 Again,	 we	 have	 a	 most	 unusual	 relationship	 between	 	 and	 :	

and

Let	us	now	investigate	powers	of	 .	In	order	to	inspect	the	successive	powers	of	
,	we	will	 break	 them	down	 into	 their	 component	 parts.	 It	may	 at	 first	 appear
more	complicated	than	it	really	is.	You	should	try	to	follow	each	step	(it's	really
not	difficult—and	yet	very	rewarding!)	and	then	extend	it	to	further	powers	of	 .



and	so	on….
	
By	this	point,	you	should	be	able	to	see	a	pattern	emerging.	As	we	take	further

powers	of	 ,	the	end	result	of	each	power	of	 	is	actually	equal	to	a	multiple	of	
plus	 a	 constant.	 Further	 inspection	 shows	 that	 the	 coefficients	 of	 	 and	 the
constants	 follow	 the	 pattern	 1,	 1,	 2,	 3,	 5,	 8,	 13,	 21,	 34,	 55,	 89,	 144,….	 This
sequence	 of	 numbers	 is	 famous	 and	 is	 known	 as	 the	 Fibonacci	 sequence.4
Beginning	with	two	1s,	each	successive	number	is	the	sum	of	the	two	preceding
numbers.	The	Fibonacci	numbers	are	perhaps	the	most	ubiquitous	numbers	in	all
of	mathematics;	they	come	up	in	just	about	every	field	of	the	subject.	Yet,	as	we
mentioned	earlier,	they	only	made	their	“debut”	in	the	Western	world	in	chapter
12	 of	 a	 1202	 publication,	Liber	 Abaci,	 by	 Leonardo	 of	 Pisa,	 most	 commonly
known	 today	 as	 Fibonacci	 (ca.	 1175–after	 1240),	 in	 the	 solution	 of	 a	 simple
problem	about	the	breeding	of	rabbits.
We	 recently	 discovered	 that	 the	 Fibonacci	 numbers	were	 described	 in	 early

Indian	mathematics	writings.5	 The	 earliest	 appearance	 can	 be	 found	 under	 the
name	m tr meru	(Mountain	of	Cadence),	which	appeared	in	Chandahs tras	(Art
of	Prosody)	by	 the	Sanskrit	grammarian	Pingala	 (between	 the	 fifth	and	second
century	BCE).	In	a	more	complete	fashion	were	the	writings	of	Virah nka	(sixth
century	 CE)	 and	 c rya	 Hemacandra	 (1089–1172),	 who	 cites	 the	 Fibonacci
numbers.	It	is	speculated	that	Fibonacci	may	have	come	to	these	numbers	from
his	Arabic	sources,	which	exposed	him	to	these	Indian	writings.
Sometime	 before	 his	 death	 in	 1564,	 the	 German	 calculation	 master	 Simon

Jacob6	 made	 the	 first	 published	 connection	 between	 the	 golden	 ratio	 and	 the
Fibonacci	 series,	 but	 it	 appears	 to	 have	 been	 something	of	 a	 side	 note.7	 Jacob
had	 published	 a	 numerical	 solution	 for	 the	 golden	 ratio.	 In	 the	margin	 of	 the
page	discussing	the	Euclidean	algorithm	from	the	second	proposition	of	book	7



of	 Euclid's	 Elements,	 he	 wrote	 the	 first	 twenty-eight	 terms	 of	 the	 Fibonacci
sequence	and	stated:	In	following	this	sequence	one	comes	nearer	and	nearer	to
that	proportion	described	in	the	11th	proposition	of	the	2nd	book	and	the	30th	of
the	 6th	 book	 of	 Euclid,	 and	 though	 one	 comes	 nearer	 and	 nearer	 to	 this
proportion	it	is	impossible	to	reach	or	to	overcome	it.
We	will	use	the	symbol	F7	to	represent	the	seventh	Fibonacci	number,	and	Fn	to
represent	the	nth	Fibonacci	number,	or	as	we	say,	the	general	Fibonacci	number,
that	 is,	any	Fibonacci	number.	Therefore,	 in	general	 terms,	we	would	write	 the
rule	of	the	Fibonacci	numbers	as	Fn+2	=	Fn+Fn+1	with	n	≥	1,	and	F1	=	F2	=	1.
	
Let	us	look	at	the	first	thirty	Fibonacci	numbers.

	
The	list	of	powers	of	 	can	easily	be	extended	by	using	the	Fibonacci	numbers
directly	in	the	pattern	we	developed	above.



Since	 the	 Fibonacci	 numbers	 appear	 as	 the	 coefficients	 of	 ,	 as	 well	 as	 the
constants,	we	can	write	all	powers	of	 	in	a	linear	form:	 n	=	a +b,	where	a	and
b	are	consecutive	Fibonacci	numbers.	In	the	general	case,	we	can	write	this	as:	
n	 =	Fn +Fn–1,	 with	 n	 ≥	 1	 and	F0	 =	 0.	 (See	 the	 appendix	 for	 a	 proof	 of	 this
statement.)	You	should	also	take	note	that	each	power	of	 	is	the	sum	of	the	two
immediately	 preceding	 powers	 of	 .	We	 can	 develop	 another	 amazing	 pattern
involving	 the	 Fibonacci	 numbers	 and	 the	 golden	 ratio.	 This	 will	 involve	 a
structure	 that	 is	 called	 a	 continued	 fraction.	 We	 will	 begin	 with	 a	 brief
introduction	to	continued	fractions.8	A	continued	fraction	is	a	fraction	in	which
the	 denominator	 contains	 a	 mixed	 number	 (a	 whole	 number	 and	 a	 proper
fraction).	We	can	take	an	improper	fraction	such	as	 	and	express	it	as	a	mixed
number:	 .	 Without	 changing	 the	 value,	 we	 could	 then	 write	 this	 as	

which	in	turn	could	be	written	(again	without	any	value	change)	as



This	is	a	continued	fraction.	We	could	have	continued	this	process,	but	when	we
reach	a	unit	 fraction9	 (as	 in	 this	case,	 the	unit	 fraction	 is	 ),	we	are	essentially
finished.
To	enable	you	 to	get	a	better	grasp	of	 this	 technique,	we	will	create	another

continued	fraction.	We	will	convert	 	to	a	continued	fraction	form.	Notice	that,
at	 each	 stage,	when	a	proper	 fraction	 is	 reached,	we	 take	 the	 reciprocal	 of	 the

reciprocal	(e.g.,	change	
as	we	will	do	in	the	example	that	follows),	which	does	not	change	its	value:

If	 we	 break	 up	 a	 continued	 fraction	 into	 its	 component	 parts	 (called
convergents),10	 we	 get	 closer	 and	 closer	 to	 the	 actual	 value	 of	 the	 original
fraction.

The	 above	 examples	 are	 all	 finite	 continued	 fractions,	which	 are	 equivalent	 to
rational	numbers	(those	that	can	be	expressed	as	simple	fractions).	It	would	then
follow	 that	 an	 irrational	 number	would	 result	 in	 an	 infinite	 continued	 fraction.
And	that	is	exactly	the	case.	A	simple	example	of	an	infinite	continued	fraction
is	that	of	 .



We	 have	 a	 short	 way	 to	 write	 a	 long	 (in	 this	 case	 infinitely	 long)	 continued
fraction:	[1;	2,2,2,2,2,2,2,…],	or	when	there	are	these	endless	repetitions,	we	can
write	it	in	an	even	shorter	form	as	 ,	where	the	bar	over	the	2	indicates	that
the	2	repeats	endlessly.
In	general,	we	can	represent	a	continued	fraction	as

where	ai	are	real	numbers	and	ai	≠	0	for	i	>	0.	We	can	write	this	in	short	fashion
as	[a0;	a1,	a2,	a3,…,	an-1,	an].

Now	that	the	concept	of	a	continued	fraction	has	been	described,	we	can	apply	it
to	the	golden	ratio.	We	begin	with	the	equation	of	the	golden	ratio:	 	=	1+ .	If
we	substitute	1+ 	for	 the	 	 in	 the	denominator	of	 the	fraction	of	 this	equation,

we	get	

and	then	continue	this	process	by	substituting	the	value	 	=	1+ 	in	each	case	for
the	 last	 denominator	 of	 the	 previous	 equation,	 we	 will	 get	 the	 following:	



Repeating	 this	 procedure,	we	 get	 an	 infinite	 continued	 fraction	 that	 looks	 like
this:

or	 .	(See	the	appendix.)
This	 gives	 our	 now	 already	 famous	 	 another	 unique	 characteristic,	 namely

that	it	is	equal	to	the	most	primitive	infinite	continued	fraction—one	with	all	1s.
Let	us	take	the	value	of	this	continued	fraction	in	successive	parts	(which	are

called	convergents),	each	of	which	will	successively	bring
us	 closer	 to	 the	 value	 of	 the	 infinite	 continued	 fraction.	 The	 successive
convergents	are	as	follows:





	

	

	

	

	



	

	

	

	



	

	
As	they	progress,	you	will	notice	how	these	convergents	seem	to	“sandwich	in,”
or	 converge,	 to	 the	 value	 of	 ,	 with	 which	 we	 are	 now	 quite	 familiar,
approximately	 1.618034.	What	 also	 emerges	 from	 these	 continually	 increasing
convergents	is	that	the	final	simple	fractional	values	of	these	convergents	happen
to	be	composed	of	the	Fibonacci	numbers.
	
Aside	from	the	continued	fraction

getting	ever	closer	to	the	value	of	 	as	we	increase	its	length,	we	shall	now	see
another	surprising	relationship	of	 	and	the	Fibonacci	numbers.
In	 the	following	chart,	we	can	see	 that	 the	ratios	of	consecutive	members	of

the	Fibonacci	sequence	also	approach	the	value	of	 .	In	mathematical	terms,	we
say	 that	 the	 limit	 of	 the	 quotient/ratio	 of	 two	 consecutive	Fibonacci	 numbers,	

is	the	value	of	 .	Mathematicians	typically	write	this	as



The	famous	Scottish	mathematician	Robert	Simson	(1687–1768),	who	wrote	an
English-language	book	based	on	Euclid's	Elements,	which	is	largely	responsible
for	the	development	of	the	foundation	of	the	high	school	geometry	course	taught

in	the	United	States,	was	the	first	to	popularize	the	notion	that	the	ratio	
of	 two	consecutive	Fibonacci	numbers	will	approach	 the	value	 	of	 the	golden
ratio.	Yet	it	was	Johannes	Kepler	(1571–1630)	whom	we	credit	with	discovering

that	the	reciprocal	quotient	
of	 two	consecutive	Fibonacci	numbers	approaches	 the	 reciprocal	of	 the	golden
ratio	 .
We	can	see	this	in	the	left	column	of	the	following	table,	where	Fn	represents

the	nth	Fibonacci	number	and	Fn+1	the	next,	or	(n+1)st,	Fibonacci	number.

The	Ratios	of	Consecutive	Fibonacci	Numbers11



By	 taking	 the	 reciprocals	 of	 each	 of	 the	 fractions	 on	 the	 left	 side,	we	 get	 the
column	 on	 the	 right	 side—also,	 as	 expected,	 approaching	 the	 value	 of	

.12	Once	 again	we	 notice	 this	most	 unusual	 relationship	 between	
and	 ,	namely	that	 —this	time	via	the	Fibonacci	numbers.

THE	BINET	FORMULA

Until	now,	we	accessed	the	Fibonacci	numbers	as	members	of	their	sequence.	If
we	 wish	 to	 find	 a	 specific	 Fibonacci	 number	 without	 listing	 all	 of	 its
predecessors,	we	have	a	general	 formula	 to	do	 just	 that.	 In	other	words,	 if	you
would	like	to	find	the	thirtieth	Fibonacci	number	without	writing	the	sequence	of
Fibonacci	numbers	up	 to	 the	 twenty-ninth	member	(F29)	 (which	 is	a	procedure



that	 is	somewhat	cumber-some),	you	would	use	the	Binet	formula.	In	1843	the
French	 mathematician	 Jacques-Philippe	 Marie	 Binet13	 (1786-1856)	 developed
this	 formula,	 which	 allows	 us	 to	 find	 any	 Fibonacci	 number	 without	 actually
listing	the	sequence	as	we	would	otherwise	have	to	do.
The	Binet	formula14	is	as	follows:

or	without	using	the	 ,	we	have

which	will	give	us	the	Fibonacci	number	(Fn)	for	any	natural	number	n	(a	proof
of	this	formula	can	be	found	in	the	appendix).

As	 is	 often	 the	 case	 in	 mathematics	 when	 a	 formula	 is	 named	 after	 a
mathematician,	controversies	arise	as	to	who	was	actually	the	first	to	discover	it.
Even	 today,	 when	 a	mathematician	 comes	 up	with	 what	 appears	 to	 be	 a	 new
idea,	others	are	usually	hesitant	to	attribute	the	work	to	that	person.	They	often
say	 something	 like:	 “It	 looks	original,	 but	 how	do	we	know	 it	wasn't	 done	by
someone	 else	 earlier?”	 Such	 is	 the	 case	 with	 the	 Binet	 formula.	 When	 he
publicized	his	work,	there	were	no	challenges	to	Binet,	but	in	the	course	of	time,
some	claims	have	surfaced	that	Abraham	de	Moivre	(1667–1754)	was	aware	of
it	 in	 1718,	 Nicolaus	 Bernoulli	 (1687–1759)	 knew	 it	 in	 1728,	 and	 his	 cousin
Daniel	Bernoulli	 (1700–1782)15	 also	 seems	 to	 have	known	 the	 formula	 before
Binet.	Also,	 the	prolific	mathematician	Leonhard	Euler	 (1707–1783)	 is	 said	 to
have	known	it	in	1765.	Nevertheless,	it	is	still	known	today	as	the	Binet	formula.
Let's	stop	and	marvel	at	this	wonderful	formula.	For	any	natural	number	n,	the

irrational	numbers	in	the	form	of	 	seem	to	disappear	in	the	calculation,	and	a
Fibonacci	 number	 appears.	 In	 other	 words,	 the	 Binet	 formula	 delivers	 the
possibility	 of	 obtaining	 any	 Fibonacci	 number,	 and	 can	 also	 be	 expressed	 in
terms	of	the	golden	ratio,	 .
So,	 now	 we	 shall	 use	 this	 formula.	 Let's	 try	 using	 it	 to	 find	 a	 Fibonacci

number,	say,	the	128th	Fibonacci	number.	We	would	ordinarily	have	a	hard	time
getting	to	this	Fibonacci	number—that	is,	by	writing	out	the	Fibonacci	sequence
with	128	terms	until	we	arrive	at	it.



Applying	the	Binet	formula,	and	using	a	calculator	of	course,	for	n	=	128	we
get:

	
As	 we	 claimed	 earlier,	 we	 can	 also	 express	 the	 Fibonacci	 numbers	 (in	 Binet
form)	 exclusively	 in	 terms	 of	 the	 golden	 ratio,	 ,	 as	

Familiarity	with	the	Fibonacci	numbers	reminds	us	of	their	recursive	definition:
Fn+2	–	Fn+1	–	Fn	=	0,	which	comes	from	the	original	definition	of	the	Fibonacci
numbers:	Fn+2	=	Fn	+	Fn+1,	where	n	≥	1	and	F1	=	F2	=	1.	Recall	the	Fibonacci
number	sequence:

	
	
Rather	 than	 beginning	with	 1	 and	 1,	 suppose	we	were	 to	 begin	with	 1	 and	 2.
Then	we	would	 still	 generate	 a	 similar	 sequence,	 except	we	would	be	missing
the	 first	 1.	 Edouard	 Lucas16	 (1842–1891),	 the	 French	 mathematician	 who	 is
largely	responsible	for	bringing	 the	Fibonacci	numbers	 to	 light	 in	recent	years,
suggested	 an	 analogous	 sequence;	 however,	 this	 time	 beginning	with	 1	 and	 3.
That	is,	for	the	(now-called)	Lucas	numbers:	Ln+2	=	Ln	+	Ln+1,	when	n	≥	1,	and
L1	=	1	and	L2	=	3.	The	sequence	looks	like	this:

	
	
Once	 again,	 our	 golden	 ratio	 comes	 into	 play	 in	 that	we	 can	 also	 express	 the
Lucas	numbers	in	terms	of	the	golden	ratio:



Let's	 admire	 the	 continued	 fraction	 development	 of	 ,	 and	 notice	 how	 it

differs	from	that	of	

Only	 the	 last	denominator	 is	different.	 It	 is	a	3	 instead	of	a	1—this	 is	also	 the
difference	 in	 the	 beginning	 of	 the	 Lucas	 sequence	 of	 numbers:	 The	 second
number	is	a	3	instead	of	a	1,	as	with	the	Fibonacci	numbers.
For	example,	consider	the	following	two	examples:

In	general	and	in	the	shortened	format	we	have	the	following:

	



One	might	then	ask	if	this	can	be	extended	to	any	starting	pair	of	numbers.	That
is,	 were	 we	 to	 begin	 a	 Fibonacci-like	 sequence	 with	 other	 starting	 numbers,
would	we	also	be	able	to	express	the	numbers	in	terms	of	 ?
Suppose	we	choose	the	starting	numbers	of	such	a	sequence	to	be	f1	=	7	and	f2

=	13	with	the	same	recursive	relationship	as	before,	where	fn+2	=	fn	+	fn+1	(with	n
≥	 1).	 We	 would	 then	 have	 the	 following	 sequence,	 which	 does	 not	 have	 a
particular	name,	as	the	Fibonacci	or	Lucas	sequences	do:

	
Yet	the	big	surprise	is	that	the	ratio	of	consecutive	members	of	the	sequence	will
tend	toward	the	golden	ratio	as	the	numbers	increase—as	was	the	case	with	the
Fibonacci	and	the	Lucas	numbers	before.	In	the	chart	below,	notice	how	the	ratio

of	 	approaches	 =1.6180339887498948482…as	a	limit.	It	is	believed	that	the
Fibonacci	numbers	provide	the	best	approximation	of	 ,	though	this	is	not	easily
seen	from	the	chart.17



	
We	can	see	this	better	when	we	take	the	fifty-place	approximation	of	the	value
of
	=	1.6180339887498948482045868343656381177203091798057….
Now	compare	this	value	to	the	approximations	below	for	n	=	100:

Curiously	 enough,	 if	we	 take	 the	 ratio	 of	 the	Lucas	 numbers	 to	 the	 Fibonacci



numbers,	 ,	 it	 seems	 to	 approach	 …,	 as	 shown	 in	 the	 chart
below.

You	 may	 be	 impressed	 further	 by	 observing	 that	 if	 we	 take	 the	 ratio	 of
alternating	Fibonacci	numbers,	 the	 limit	as	 the	numbers	 increase	will	approach
the	value	 +1.	Another	way	of	saying	this	is	that	by	taking	increasing	Fibonacci

numbers	for	 ,	we	gradually	approach	the	value	of	 +1	as	shown	in	the	chart



below:	
Yet,	if	we	consider	the	series

it	approaches	the	golden	ratio,	 ,	as	compared	to	the	value	reached	by	the	series	

,	which	tends	toward	 +1.	If	you	consider	that	we	already	established	that	
+1	=	 2,	the	relationship	above	should	not	be	completely	unexpected.18
One	more	little	tidbit	relating	the	Fibonacci	numbers	to	the	golden	ratio	can	be

seen	by	taking	the	series	of	reciprocals	of	Fibonacci	numbers	in	the	position	of



powers	of	2.

or	written	another	way,

At	 the	 point	 at	 which	 k	 =	 6,	 we	 get	 a	 rather	 good	 approximation19:	

which	 you	 can	 appreciate	 when	 comparing	 it	 to	 the	 value	 4	 –	 	 ≈
2.38196601125010515179541316563.
There	are	many	numerical	expressions	 that	characterize	 the	golden	ratio,	but

none	 as	 simply	 as	 the	 unique	 relationship	 between	 the	 golden	 ratio	 and	 its
reciprocal:	 	and	 .	For	no	other	number	is	this	true!
If	we	 look	at	 	with	 the	 above	 relationships	 in	mind,	 there	 are	 a	number	of

variations	that	can	result.	For	example,	which	positive	number	is	1	greater	than
its	reciprocal?	Yes,	by	now	you	probably	guessed	it:	 .
The	question	yields	the	following	equation:	 ,	which	can	then	be	written

as	x2	=	1	+	x,	or	x2	–	x	–	1	=	0.	This	has	its	positive	root:	
Yes,	the	golden	ratio!
One	might	also	say	that	 	is	the	only	number	that	is	1	less	than	its	square.	That

is,	x	=	x2	–	1,	which	leads	us	back	to	the	previous	equation,	x2	–	x	–	1	=	0,	which
when	substituting	 for	x	gives	us	 	=	 2	–	1.	This	 is	a	 relationship	 that	we	saw
earlier	as	 2	=	 	+	1,	when	we	then	used	it	to	generate	the	powers	of	 .
As	we	 further	 investigate	 the	 representation	of	 the	golden	 ratio,	we	can	ask:

What	is	the	solution	to	each	of	the	following	equations?



If	we	divide	each	of	these	equations	by	xn,	where	n	is	the	power	of	the	third	term
of	 the	equation,	we	get	 the	 following	equation:	x2	–	x	–	1	=	0,	a	solution	with
which	we	are	by	now	quite	familiar;	namely	 ,	and	 	hence	the	golden	ratio!
Furthermore,	when	we	consider	the	equation	in	the	form	of	ax2	+	bx	+	c	=	0,

where	a,	b,	and	c	take	on	values	1	and	–1,	we	get	the	golden	ratio,	 ,	in	a	number
of	ways,	as	long	as	the	roots	are	not	complex	numbers.20

	
The	chart	below	shows	the	various	solutions	to	these	equations.



As	we	search	for	ways	to	express	the	value	of	 ,	we	cannot	neglect	the	value	of
π.	We	can	take	an	approximation	to	make	this	comparison.	We	can	show	that	the
circumference	of	a	circle	with	radius	of	length	 	is	approximately	equal	to	the
perimeter	of	a	square	with	side	length	2.	That	is,	the	circumference	of	this	circle
is	2π ≈7.992≈8,	and	the	perimeter	of	the	square	is	4	·	2	=	8.
This	can	give	us	an	approximate	value	for	π	in	terms	of	 ;	since	we	have	π

≈4,	 this	 then	 can	 be	 written	 as	 ,	 a	 very	 close
approximation	of	 ≈	1.618.
Irrational	 numbers	 can	 only	 be	 approximated	 by	 fractions	 in	 the	 decimal



system.	For	example,	Archimedes	 (287–212	BCE)	 found	an	approximation	 for
the	irrational	number	π	=	3.141592653.…,	namely	
Inspecting	these	two	limiting	fractions,	we	find	that	 	has	a	period	of	length

35	 (i.e.,	 after	 which	 the	 decimal	 begins	 to	 repeat	 itself)	 as	 shown	 here:
3.140845070422535211267605633802816901408450….	And	the	fraction	 	has
a	 period	 of	 length	 6,	 as:	 3.142857142857	 142….	 Yet	 we	 notice	 that	 both
fractions	 establish	 the	 value	 of	 π	 to	 two-decimal-place	 accuracy.	On	 the	 other
hand,	the	fraction	 approximates	the	value	of	π	to	an	accuracy	of	six	decimal
places	as:	 	=	3.141592920.…
For	 the	 golden	 ratio,	 	 =	 1.618033988….	 ,	 we	 have,	 for	 example,	 the

following	 approximation	 (using	 Fibonacci	 numbers)	 correct	 to	 five	 decimal
places:	 	=	1.618032786….
That	should	not	come	as	a	surprise	since	we	already	saw	that	the	quotient	of

consecutive	Fibonacci	numbers	yields	ever	closer	approximations	of	the	golden
ratio,	 .
The	best	approximations	of	 ,	when	both	numerator	and	denominator	have	the

same	 number	 of	 digits,	 is	 achieved	 with	 the	 Fibonacci	 numbers,	 as	 seen,	 for
example,	with	single-digit	fractions	as	 	and	with	double-digit	fractions	as	

From	our	study	of	continued	fractions,	we	saw	that	 	and	 	can	be	represented
by	the	simplest	of	all	continued	fractions,	since	they	consisted	of	all	1s.	The	sad
news	 here	 is	 that	 despite	 their	 “simplicity,”	 they	 require	 one	 of	 the	 largest
numbers	of	 fractions	 to	 reach	 their	convergence	at	 infinity.	We	might	 then	say
that	the	golden	ratio	and	its	reciprocal	are	the	most	irrational	numbers,	because
they	 require	 the	most	 fractions	 to	 reach	 their	 best	 approximation.	We	will	 see
later,	however,	that	despite	this	rather	sad	assessment,	the	golden	ratio	will	show
its	beauty	in	art	and	nature	well	above	all	other	numbers.
There	are	many	other	numerical	 representations	of	 .	Some	of	 these	 involve

trigonometric	functions.	We'll	show	a	few	of	these	here.	You	may	wish	to	verify
their	(correct)	values.



See	 the	appendix	 for	more	 trigonometric	 relationships	 that	 result	 in	 the	golden
ratio.
While	on	the	topic	of	the	trigonometric	functions,	it	might	be	interesting	and

noteworthy	to	see	that	through	trigonometry	we	can	connect	the	value	of	π	to	the
golden	ratio	as	in	the	following,	where	we	can	express	the	value	of	π	in	terms	of	
.

The	justification	for	these	representations	can	be	found	in	the	appendix.

As	you	can	see,	the	golden	ratio,	 ,	can	be	represented	in	a	number	of	ways.	In
chapter	 5,	 we	 will	 provide	 some	 surprising	 appearances	 of	 this	 apparently
ubiquitous	number.



Chapter	5

Unexpected	Appearances
of	the	Golden	Ratio

Up	to	now,	we	have	investigated	the	golden	section	geometrically,	algebraically,
and	numerically.	We	shall	now	embark	on	an	unusual	adventure—exploring	the
many	curious	ways	 in	which	the	golden	section	appears	where	you	might	 least
expect	 it.	 Just	 as	 the	 value	 of	 π,	 which	 emanates	 from	 its	 relationship	 to	 the
circle,	can	be	found	in	a	host	of	other	contexts,	so	too	can	the	golden	section,	 ,
be	 found—in	 as	 many	 interesting	 and	 unanticipated	 places.	 This	 potpourri	 of
sightings	of	the	golden	section	will	vary	greatly,	which	we	hope	will	add	to	the
never-ending	 fascination	 that	 this	 ubiquitous	 number	 has	 provided	 us	 over	 the
millennia.	 We	 see	 these	 as	 mathematical	 curiosities	 and	 have	 named	 them
accordingly.

CURIOSITY	1

In	 an	 equilateral	 triangle,	ΔABC,	 each	 side	 of	 length	 s	 is	 partitioned	 (with	 the
same	orientation)	into	the	segments	a	and	b,	which	are	in	the	golden	ratio	(fig.	5-
1).	The	result	is	that	an	inscribed	equilateral	triangle,	ΔDEF,	is	created	with	side
length	c.	Although	this	figure	has	the	golden	section	built	into	the	construction,
it	 is	 amazing	 how	 the	 golden	 ratio	 emerges	 in	 a	 multitude	 of	 aspects	 of	 this
figure.



Here	are	some	of	the	appearances	of	 	in	figure	5-1:	s	
	
	

3.	The	ratio	of	the	areas	of	the	two	equilateral	triangles	is

4.	The	area	of	each	of	the	three	congruent	triangles,	ΔADF,	ΔBDE,	and	ΔCEF,	is

5.	The	 ratio	of	 the	 areas	of	 the	original	 equilateral	 triangle	 to	one	of	 the	 three
congruent	triangles	is



6.	 The	 ratio	 of	 the	 area	 of	 the	 smaller	 equilateral	 triangle	 to	 one	 of	 the	 three
congruent	triangles	is

(The	 justifications	 for	 these	 are	 not	 complicated,	 but	 are	 relegated	 to	 the
appendix	 so	 as	 not	 to	 break	 the	 flow	 of	 the	 presentation	 of	 curiosities.)
CURIOSITY	2
We	begin	with	a	triangle,	ΔABC	(fig.	5-2),	with	sides	BC	=	1,	AC	=	x,	and	AB	=
x2.	 If	 x	 <	 1,	 then	BC	 is	 its	 largest	 side	 and	AB	 is	 its	 shortest	 side.	 Using	 the
triangle	inequality,1	we	get	x2	+	x	>	1.	By	adding	 	to	each	side	of	the	inequality:

	
As	we	must	be	working	with	positive	numbers,	we	get

That	 is,	 the	 side	 of	 length	 x	must	 be	 such	 that	 	Here	 the	 golden	 ratio
takes	the	role	of	a	limiting	length.

We	 now	 consider	 a	 circle	 c	 through	 point	 B	 and	 tangent	 to	 AC	 at	 point	 A,
intersecting	 BC	 at	 D.	 (See	 fig.	 5-3.)	



	

From	this	similarity,	it	then	follows	that
	

	which	leads	to	AD	=	x3,	and

	which	leads	to	CD	=	x2.
	
From	 this	 we	 have	 the	 possibility	 of	 constructing	 a	 set	 of	 triangles,	 the	 sides
having	lengths	xn,	xn+1,	xn+2,	where	n	=	0,	1,	2,	3,….	A	rather	nice	pattern!

CURIOSITY	3

Here	 we	 will	 create	 a	 situation	 where	 the	 golden	 section	 will	 continuously
reappear.	 In	 figure	 5-4,	 the	 point	 S	 divides	 the	 segment	 AB	 into	 the	 golden
section.	From	this,	we	can	generate	many	more	golden	sections,	as	you	will	see
in	the	following	steps.



1.	 The	circle	with	center	at	A	with	radius	AS	cuts	the	line	AB	at	a	second	point	C.

We	then	have	

2.	 The	circle	with	B	as	its	center	and	radius	AB	intersects	the	line	AB	at	a	second

point	D.	We	then	have	

What	might	you	guess	are	the	following	ratios?	and	Yes,	they	are	the	golden
ratio,	 !
We	can	justify	these	appearances	of	the	golden	ratio	as	follows:

	
	

Analogously,	we	can	show	the	rest	of	the	ratios	as	equal	 to	 	You
might	want	to	continue	this	process	to	see	the	pattern	that	will	evolve.

CURIOSITY	4

Referring	to	figure	5-5,2	we	begin	with	line	segment	AB,	and	at	B	we	construct	a
perpendicular	 segment,	BC,	 half	 the	 length	 of	AB.	 So,	 if	we	 let	AB	 =	 1,	 then	

	We	then	construct	a	circle	c1	with	its	center	at	A	and	radius	AC	=	r1	to
intersect	the	line	AB	at	point	D.	At	D,	another	perpendicular	is	erected	the	same
length	as	BC.	Therefore,	 	Finally,	we	construct	a	circle	c2	with	its	center
at	 D	 and	 with	 radius	 DE	 =	 r2,	 cutting	 AB	 at	 points	 P	 and	 Q.	 Completely



unexpectedly,	it	turns	out	that	points	P	and	Q	enable	us	to	partition	the	segments
AB	and	AQ	into	the	golden	section.

To	see	why	this	works—that	is,	to	justify	this	oddity—we	begin	by	applying	the
Pythagorean	theorem	to	triangle	ABC,	to	find

	which	tells	us	the	other	radius	of	the	circle,	
	

	

and,	on	the	other	hand,



as	well	as

Unexpected	 appearances	 of	 the	 golden	 section	 such	 as	 these	 make	 it	 so
intriguing.	 Sometimes	 when	 you	 do	 not	 actually	 expect	 the	 golden	 ratio	 to
appear,	it	just	does.

CURIOSITY	5

From	 our	 previous	 exploration	 of	 the	 golden	 section	 in	 polygons,	 we	 find	 it
particularly	ubiquitous	in	the	pentagon,	and	consequently	in	the	pentagram.	It	is
now	 only	 fitting	 that	 we	 investigate	 the	 golden	 section's	 appearance	 in	 the
regular	hexagram:	a	six-pointed	star	in	which	each	of	the	“points”	is	formed	by
an	equilateral	 triangle	 and	 in	which	 the	center	 is	 a	 regular	hexagon.	We	begin
our	search	for	 the	golden	ratio	in	figure	5-6,	with	a	regular	hexagram.	We	will
construct	a	circle	with	center	D	and	radius	DC	to	intersect	the	extension	of	line
segment	AB	at	point	S.	Curiously	enough—among	other	sightings	of	the	golden
section—we	find	that	point	B	partitions	line	segment	AS	in	the	golden	ratio.	Let
us	see	why	this	actually	is	true.

In	figure	5-7,	we	will	let	AB	=	a	and,	by	symmetry,	 	We	also	have	



	
Applying	the	Pythagorean	theorem	to	triangle	ΔBCP,	we	get	
When	we	apply	the	Pythagorean	theorem	to	ΔDHP,	we	get	

The	 circle	 we	 constructed	 with	 center	D	 and	 radius	CD	 (which	 is	 also	 the
diameter	of	the	circumscribed	circle	of	the	hexagram)	intersects	the	extension	of
line	segment	AB	at	point	S.	With	this	point,	S,	we	determine	ΔDPS,	to	which	we
shall	 again	 apply	 the	 Pythagorean	 theorem,	 to	 obtain	

which	then	has	 	Now	that	we	have	arrived	at	an	expression	involving	
	we	begin	to	anticipate	that	the	golden	ratio	is	soon	to	appear.
To	establish	the	golden	ratio,	we	begin	with

We	are	now	ready	to	inspect	the	crucial	ratios.





and

	
Thus,	we	have	again	found	the	golden	ratio,	this	time	embedded	in	the	hexagram
—not	a	very	well-known	place	to	find	it!

CURIOSITY	6

The	floral	designs	in	figures	5-8	and	5-9	look	rather	attractive	and	can	be	seen	in
many	contexts—toys,	puzzles,	and	so	on.	Beyond	its	optical	beauty,	there	is	also
the	subtle	beauty	owing	to	its	reliance	on	the	golden	section.



In	 figure	 5-10,	 we	 can	 see	 the	 basis	 for	 its	 construction—a	 combination	 of
circles,	each	of	which	is	centered	on	one	of	the	six	equidistant	points	on	a	given
circle.

In	figure	5-11,	we	have	AM	=	BM	=	CM	=	DM	=	EM	=	FM	=	r,	as	well	as	AB	=
BC	=	CD	=	DE	=	EF	=	AF	=	r	(since	ABCDEF	is	a	regular	hexagon).	We	then
have	the	golden	ratio	in	that	 	Let's	see	why	this	is	true.



Building	from	our	investigation	of	Curiosity	5,	we	have	found	that	in	figure	5-
11,	triangle	AFM	is	equilateral	and	AM	is	the	perpendicular	bisector	of	BF.	We

then	 get	 	 where	 r	 is	 the	 radius	 of	 one	 of	 the
congruent	circles.	Also	
Circle	c1	has	its	center	at	A	and	radius	 	and	circle	c2	has	its	center	at

D	and	radius	
Circles	 c1	 and	 c2	 intersect	 at	 point	H	 (and	 another	 point	 not	 shown)	 with	

Circle	c3	has	its	center	at	B	and	radius	 	Circle	c4	has	its	center	at
F	and	intersects	AD	at	S.
We	are	now	ready	to	show	that	 	the	golden	ratio.	We	first	apply

the	 Pythagorean	 theorem	 to	 triangle	 BGS	 to	 get	

Therefore,	
With	these	values	(in	terms	of	r)	we	can	find	the	desired	ratios:



This	justifies	our	earlier	statement	about	the	beautiful	design	(figs.	5-8	and	5-9)
having	the	golden	ratio	embedded	within	it.

CURIOSITY	7

An	analogous	situation	to	that	of	Curiosity	6	can	be	made	for	a	similar	design,
but	based	on	a	regular	pentagon	rather	than	the	hexagon	used	earlier.	Here,	too,
the	golden	section	will	appear	embedded	in	the	design.	As	we	inspect	the	design
in	figure	5-12,	we	find	 that	we	have	five	congruent	circles	centered	at	 the	five
vertices	of	a	regular	pentagon,	each	containing	the	center	of	the	pentagon.	Thus,
the	design	is	similar	to	the	previous	one.

For	the	sake	of	convenience,	we	will	let	the	radii	of	these	circles	have	length	r	=
1.	In	figure	5-13,	we	have	a	detailed	enlargement	of	the	diagram	in	figure	5-12,
and	we	will	call	 the	centers	of	two	of	the	intersecting	circles	M1	and	M2.	They



intersect	at	points	A	and	M.	We	will	now	seek	to	find	the	length	of	AM.

In	 chapter	 4,	 we	 investigated	 the	 regular	 pentagon	 with	 respect	 to	 its
involvement	with	 the	 golden	 ratio.	 In	 figure	 5-13,	we	 present	 a	 close-up	 of	 a
portion	 of	 figure	 5-12	 so	 that	we	 can	 properly	 focus	 in	 on	 quadrilateral	MM1
AM2,	which	is	a	rhombus	since	MM1	=	AM1	=	AM2	=	MM2	=	r	=	1.	This	now
tells	us	 that	 the	radius	of	 the	circumscribed	circle	of	 the	pentagon	rc	=	MM1	=
MM2	=	1.	The	 inscribed	circle	of	 the	regular	pentagon,	which	 is	 tangent	 to	 the
pentagon's	 side	Ml	M2	 at	 its	 midpoint	 P,	 is	MP	 =	 ri.	 These	 pentagon-related
circles	can	be	seen	in	figure	5-14.



	
Once	again	looking	at	figure	5-13,	and	recalling	our	findings	from	chapter	4,	we
can	 better	 define	 the	 right	 ΔMM1P,	 by	 establishing	 that	



Then	we	see	that

So	we	can	finally	determine	that	
Because	the	diagonals	of	a	rhombus	are	perpendicular	bisectors	of	each	other,	

	Therefore,	we	have	 found	 that	 the	 length	of	one	of
the	petals	of	the	floral	design	is	equal	to	the	golden	ratio.

CURIOSITY	8

Again,	we	encounter	here	an	unanticipated	emergence	of	the	golden	section.	In
figure	5-15,	we	have	two	circles,	c1	and	c2,	which	are	 tangent	at	point	B,	have
their	centers	at	M1	and	M2,	and	have	radii	r1	=	AM1	=	BM1	and	r2	=	BM2	=	CM2.
If	the	smaller	circle,	c2,	is	so	constructed	that	the	point	C	is	the	center	of	gravity
of	 the	shaded	region	(we	call	 this	shaded	region	a	 lune),	 then	any	chord	of	 the
larger	circle,	c1,	 from	point	B	will	be	partitioned	by	 the	smaller	circle,	c2,	 into
the	golden	section.	This	means	that	point	C	partitions	AB	into	the	golden	section,
as	well	 as	 any	other	 chord	 of	 the	 larger	 circle	 from	point	B,	 such	 as,	 say,	DB
(shown	in	fig.	5-16),	where	the	point	E,	at	which	the	smaller	circle	intersects	DB,
will	also	determine	the	golden	section	of	that	line	segment,	DB.



Let's	use	figure	5-16,	where	circle	c2	is	so	constructed	that	point	C	is	the	center
of	gravity	of	the	lune.	The	curiosity	that	we	want	to	establish	here	is	that	circle

c2	is	so	constructed	that	the	ratio	of	the	radii	 	This	will	then	allow	us	to	also
show	 a	 further,	 and	 perhaps	 even	 more	 amazing,	 curiosity	 that	 the	 point	 E
(where	circle	c2	intersects	BD)	partitions	the	chord	BD	into	the	golden	section.
To	justify	this	curiosity,	we	begin	by	establishing	the	areas	of	the	three	figures

—the	two	circles	and	the	lune—in	figure	5-16:

	
We	 also	 need	 to	 express	 lengths	 in	 terms	 of	 the	 radii	 so	 we	 have	

	
We	now	consider	 a	 balance	 scale	with	 the	 fulcrum	at	 point	M1.	With	C	 the

center	of	gravity	of	 the	 lune	and	M2	 the	center	of	gravity	of	 the	circle	c2,	 and
knowing	that	they	will	balance	the	scale	proportional	to	their	weight,	we	get	the
following:

	
Therefore,	

	
Dividing	both	sides	of	the	equation	by	p	gives	us

	
Then,	dividing	both	sides	of	the	equation	by	r1	–	r2	we	get



Now	dividing	by	 	and	at	the	same	time	replacing	 	with	x,	we	get	our	now-
familiar	 equation	 that	will	 give	us	 the	golden	 ratio:	x2	 +	x	 –	 1	=	0,	where	 the
(positive)	root	is	
Thus	 	 which	 is	 one	 of	 the	 relationships	we	wanted	 to

demonstrate.
Not	 only	 are	 the	 radii	 in	 the	golden	 ratio,	 but	 also	 the	 line	 segment	AB	 can

now	be	 shown	 to	be	partitioned	 into	 the	golden	 ratio	by	point	C.	This	we	can

show	as	follows:	

To	complete	our	original	claim	about	the	smaller	circle	partitioning	any	chord	of
the	 larger	 circle	 that	 contains	 the	 common	 point	 of	 tangency	 into	 the	 golden
ratio,	we	will	consider	any	randomly	selected	chord,	DB,	of	the	larger	circle,	c1,
to	 see	 if	 it	 is	 then	partitioned	 into	 the	golden	 ratio	by	 the	smaller	circle,	c2.	 In
figure	5-17,	E	 is	 the	point	of	intersection	of	the	circle	c2	with	chord	DB.	Since
the	angles	at	D	and	E	are	each	 inscribed	 in	a	semicircle,	 they	are	 right	angles.
The	 right	 triangles	 ABD	 and	 CBE	 are	 similar	 and	 AD	 ||	 CE.	 Therefore,	

When	we	reflect	on	this	curiosity	a	bit,	we	notice	how	surprising	it	is	that	once
again	 	comes	up	when	least	expected.

CURIOSITY	9



We	now	 embark	 on	 a	 rather	 different	 configuration	 and	 search	 for	 the	 golden
ratio	embedded	within	it.	We	shall	begin	by	taking	a	square	with	side	length	2
and	 along	 two	 opposite	 sides	 construct	 two	 congruent	 semicircles	 each	 with
radius	 	as	shown	in	figure	5-18.	We	will	show	that—surprisingly—the	radius
of	 the	circle	constructed	 tangent	 to	 the	 four	semicircles	 is	 the	 reciprocal	of	 the
golden	ratio.

	
In	figure	5-19,	we	repeat	the	above	configuration,	where	AB	=	BC	=	CD	=	AD	=
2,	 yet	 this	 time	 with	 some	 auxiliary	 line	 segments.	 Clearly,	 the	 radii	 of	 the
semicircles	are	

Applying	 the	 Pythagorean	 theorem	 to	 the	 right	 ΔEGM,	 where	 EM	 =	 1,	



	
which	results	 in	 	and	then	gives	us	r2	+	r	–	1	=	0.	Once	again,
we	find	ourselves	with	the	equation	that	will	yield	the	golden	section,	 	(By
now,	we	are	accustomed	to	ignoring	the	root	 	since	it	is	negative.)	Thus,

the	radius	of	the	center	circle	is	
It	is	curious	how,	once	again,	unexpectedly	the	golden	ratio	appears.

CURIOSITY	10

In	 this	 curiosity,	we	will	 actually	 begin	with	 a	 constructed	 golden	 section	 and
have	it	“automatically”	assist	us	in	constructing	the	golden	section	on	other	line
segments.	Our	“tool”	for	doing	this	golden	section	construction	is	the	arbelos,3	a
figure	obtained	by	drawing	three	semicircles,	two	along	the	diameter	of	the	third.
The	 two	 smaller	 semicircles	 can	 be	 of	 any	 size,	 as	 long	 as	 the	 sum	 of	 their
diameters	equals	 the	entire	diameter	of	 the	 third	 semicircle.	Thus,	as	 shown	 in
figure	 5-20,	AS	 +	 SB	 =	AB.	 This	 figure	 was	 known	 to	 Archimedes	 (287–212
BCE),	who	studied	 it	extensively.	The	arbelos	draws	 its	name	from	the	Greek,
meaning	 shoemaker's	 knife,	 since	 it	 resembles	 the	 tool	 used	 by	 ancient
shoemakers.

What	distinguishes	our	 arbelos	 from	all	 the	others	 is	 that	we	have	 constructed
ours	with	one	extra	stipulation:	The	diameters	of	 the	 two	smaller	circles	are	 in



the	golden	ratio—that	is,	 	(See	fig.	5-20.)
In	figure	5-21,	we	have	rl	=	AMl	=	SMl	and	r2	=	BM2	=	SM2.	The	radius,	r,	of

the	 large	 semicircle	 is	 r	 =	 r1	 +	 r2	 =	AM	 =	BM.	The	 usefulness	 of	 this	 special
golden	 ratio	 arbelos	 is	 that,	 for	 any	 point	C	 on	 the	 larger	 semicircle,	 the	 two
chords	drawn	to	the	semicircle's	diametrical	endpoints	are	related	by	the	golden
ratio.	We	might	therefore	want	to	call	this	the	golden	arbelos.

Symbolically,	 for	 figure	 5-21,	where	we	 began	with	 	we	 then	 also
have	 	Thus,	we	have	created	a	tool	that	determines
the	 golden	 ratio	 for	 a	 given	 line	 segment:	 Here	 in	 figure	 5-21,	 the	 two	 line
segments	so	partitioned	are	AC	and	BC.
We	also	 find	 that	 the	semicircular	arc	 lengths	b,	b1,	b2	 (fig.	5-20)	are	 in	 the

ratio	 of	 	 and	 the	 ratio	 of	 the	 respective	 areas	 of	 the	 semicircles	 is	

	 This	 is	 not	 intuitively	 obvious,	 despite	 the	 special	 type	 of	 arbelos
having	the	golden	section.
It	is	also	interesting	to	inspect	the	relationship	of	the	perimeter	and	area	of	the

arbelos	with	respect	to	the	diameter	(AB).	Let	us	now	embark	on	justifying	these
characteristics	of	this	special	arbelos.



We	can	easily	justify	that	point	D	partitions	the	segment	AC	into	the	same	ratio
as	 S	 partitions	 AB,	 namely	 the	 golden	 ratio.	 Similarly,	 the	 point	 E	 partitions
chord	BC	 into	 the	 same	 ratio.	We	notice	 the	 right	 angles	 in	 figure	5-22,	 since
these	 angles	 are	 inscribed	 in	 a	 semicircle.	And	we	 also	 have	 similar	 triangles:
ΔABC,	ΔASD,	and	ΔSBE.	Furthermore,	since	CDES	is	a	rectangle,	we	also	have
CD	=	ES	and	CE	=	DS.	Therefore,	 	As	we	hinted	at	earlier,	this
argument	can	be	repeated	analogously	for	chord	BC.
We	can	also	appreciate	the	converse	of	this	beautiful	relationship.	Suppose	AC

is	 just	 any	 chord	 in	 the	 semicircle	 with	 diameter	AB.	 Suppose	 further	 that	D
determines	 the	 golden	 section	of	AC.	Then	 the	 locus	 of	 all	 such	points	D	 is	 a
semicircle	with	diameter	AS,	where	the	point	S	will	determine	the	golden	section
of	AB.
As	an	extra	attraction,	let	us	consider	the	arc	lengths	of	the	three	semicircles:	

Then:

	
We	shall	now	consider	the	areas	of	the	three	semicircles:

Then,	when	we	 take	 the	 ratio	of	 the	 areas	of	 these	 semicircles,	we	once	 again
find	the	golden	ratio	emerging.





and

As	 for	 the	 last	 property	 we	 mentioned	 about	 the	 arbelos,	 we	 have	 for	 the
perimeter:
	
	

The	area	of	the	arbelos	can	be	obtained	as	follows:
	

As	a	bonus	 to	 this	curiosity,	we	can	also	say	 that	 if	 the	 legs	of	a	 right	 triangle
(here,	in	fig.	5-23,	we	refer	to	right	triangle	ABC)	are	in	the	golden	ratio,	then	the
altitude,	 CF,	 to	 the	 hypotenuse,	 AB,	 determines	 the	 golden	 ratio	 as	



CURIOSITY	11

The	 Chinese	 symbol	 yin	 and	 yang	 (fig.	 5-24)	 depicts	 opposing	 forces	 and
intends	 to	 show	 that	 they	 are	 interconnected	 in	 nature.	 This	 concept	 is	 key	 to
much	 of	Chinese	 philosophy	 and	 science.	As	 you	might	 expect	 by	 now,	 once
again	the	golden	section	is	embedded	in	this	symbol.

The	yin	and	yang	design	is	comprised	of	two	congruent	semicircles	on	opposite
sides	of	a	diameter	of	a	circle,	whose	diameter	 is	 twice	that	of	 the	two	smaller

semicircles.	(See	fig.	5-25.)	
If	we	 let	 the	 length	 of	 the	 radius	 of	 the	 larger	 circle	 (fig.	 5-25)	 equal	 1,	 then	

	To	this	figure,	we	now	add	circles	c1	and	c2,	each	with
point	A	as	center	so	that	they	are	tangent	to	the	congruent	semicircles	at	points	E
and	F,	respectively.



We	then	have	r1	=	AE	and	r2	=	AF.	Since	CE	and	AE	are	both	perpendicular	to
the	tangent	 to	both	circles	(were	it	 to	be	drawn)	at	E,	 they	must	coincide.	This
enables	us	to	apply	the	Pythagorean	theorem	to	ΔAMC,	which	gives	us

	
There,	once	again,	appears	the	golden	section.

In	 figure	 5-26,	 	 is	 inscribed	 in	 a	 semicircle,	 and	 therefore	 it	 is	 a	 right
angle.	Thus,	we	can	apply	the	Pythagorean	theorem	to	right	triangle	ABG,	to	get	

	
In	our	 investigation	of	 the	golden	pentagon,	we	found	 that	 for	a	circumscribed
circle	 with	 radius	 length	 1,	 the	 side	 of	 the	 inscribed	 pentagon	 is	

	



Hence	we	have	from	within	the	yin	and	yang	not	only	the	golden	section	but	also
the	golden	pentagon,	as	shown	in	figure	5-27.

CURIOSITY	12

This	 curiosity	 builds	 on	 the	 investigations	 we	 made	 in	 chapter	 4	 about	 the
regular	 pentagon.	Yet	 it	 requires	 one	 of	 the	most	 powerful	 theorems—that	 is,
sadly,	 too	 often	 neglected—from	 plane	 geometry.	 This	 relationship,	 first
discovered	 by	 the	 Greek	 mathematician	 Claudius	 Ptolemy	 (ca.	 90–ca.	 168),
provides	us	with	a	valuable	 relationship	between	 the	sides	and	diagonals	of	an
inscribed	quadrilateral.	The	theorem	states	that,	for	a	quadrilateral	inscribed	in	a
circle,	 the	 sum	of	 the	 products	 of	 the	 opposite	 sides	 equals	 the	 product	 of	 the
diagonals.4	 In	 figure	 5-28,	 we	 have	 inscribed	 quadrilateral	 ABCD	 and	



Now	 that	 we	 have	mastered	 this	 lovely	 relationship,	 let's	 consider	 the	 regular
pentagon	ABCDE	 in	 figure	 5-29	 and	 focus	 on	 the	 isosceles	 trapezoid	ACDE,
with	sides	length	a,	bases	length	a	and	d,	and	diagonal	length	d.	This	trapezoid
happens	to	be	an	inscribed	quadrilateral,	and	therefore,	we	can	apply	Ptolemy's
theorem	(fig.	5-29):

	
We	can	rewrite	this	equation	as	a	proportion,	which	then	delivers	for	us	the	now-
familiar	result	

Remember	that	in	chapter	4	we	already	established	that	



Suppose	 we	 now	 randomly	 select	 a	 point	 X	 on	 the	 pentagon's	 circumscribed
circle	 (fig.	 5-30),	 but	 not	 at	 one	 of	 the	 vertices	 of	 the	 pentagon.	 Applying
Ptolemy's	 theorem	 to	 quadrilateral	 ACDX	 gives	 us	
	
Therefore,

	



which	leads	to

	
put	another	way:

We	leave	other	rich	relationships	to	be	found	in	this	configuration	to	the	reader.

CURIOSITY	13

Most	of	the	beauties	involving	this	golden	section	are	drawn	on	paper,	yet	one	of
them	can	be	achieved	by	simply	folding	a	knot	with	a	strip	of	paper.5	Just	take	a
strip	of	paper,	say,	about	one	inch	wide,	and	make	a	knot.	Then	very	carefully
flatten	the	knot	as	shown	in	figure	5-31.	Notice	the	resulting	shape	appears	to	be
a	regular	pentagon.

	
Figure	5-32	shows	this	in	more	detail.

	



Through	this	paper-folding	exercise,	we	can	see	the	pentagon	and	the	pentagram
(with	 one	 part	missing).	 This	 configuration	 allows	 us	 to	 visualize	 each	 of	 the
diagonals	 of	 the	 pentagon	 parallel	 to	 one	 of	 its	 sides—since	 the	 sides	 of	 the
paper	strip	are	parallel.	If	you	use	relatively	thin	translucent	paper	and	hold	it	up
to	 a	 light,	 you	 ought	 to	 be	 able	 to	 see	 a	 pentagon	 with	 its	 diagonals.	 These
diagonals	intersect	each	other	in	the	golden	section.
If	 you	 now	unfold	 this	 paper	 strip,	 you	will	 have	 a	 parallelogram	with	 four

congruent	 isosceles	 trapezoids,	each	with	 three	sides	equal	 to	 the	 length	of	 the
sides	 of	 the	 pentagon,	 and	 the	 fourth	 side	 the	 length	 of	 the	 diagonals	 of	 the
pentagon	(fig.	5-33).

Elaborating	 on	 this	 a	 bit,	 in	 figure	 5-34,	 we	 find	 that	 the	 shorter	 side	 of	 the
parallelogram	has	the	length	of	the	side	(a)	of	the	pentagon,	and	the	long	side	is
the	sum	of	twice	a	side	(a)	and	twice	a	diagonal	(d	=	 a)	of	the	pentagon,	that	is,
2a	+	2d	=	2 2a.	The	height	(h)	of	the	parallelogram	is	equal	to	the	width	of	the
paper	strip.



The	angles	are	α	=	36°,	β	=	108°,	and	γ	=	72°.	(See	chap.	4.)	From	the	figure's
symmetry,	we	get	a	+	2x	=	d.	Therefore,	
We	 represent	 the	 width	 of	 the	 strip	 as	 h,	 the	 side	 length	 as	 a,	 and	 the

pentagon's	diagonal	as	d.
We	then	have	 	and



from	which	we	get



and

CURIOSITY	14

Now	we	will	examine	a	particularly	curious	problem.	It	was	made	popular	by	the
English	mathematician	Charles	Lutwidge	Dodgson	(1832–1898),	who,	under	the
pen	name	of	Lewis	Carroll,	wrote	The	Adventures	of	Alice	in	Wonderland.6	He
posed	the	following	problem:	The	square	on	the	left	in	figure	5-35	has	an	area	of
64	square	units	and	is	partitioned	into	quadrilaterals	and	triangles,	and	then	these
parts	are	rearranged	and	reassembled	to	form	the	rectangle	on	the	right	in	figure
5-35.

This	rectangle	has	an	area	of	13·5	=	65	square	units.	Where	did	this	additional
square	unit	come	from?	Think	about	it	before	reading	further.
All	right,	we'll	relieve	you	of	the	suspense.	The	“error”	lies	in	the	assumption

that	the	rearranged	triangles	and	quadrilaterals,	when	placed	as	in	the	right	side
of	figure	5-35,	will	all	line	up	along	the	drawn	diagonal.	This	turns	out	not	to	be
so.	 In	 fact,	when	put	 together	properly,	a	“narrow”	parallelogram	 is	embedded
here,	and	it	has	an	area	of	one	square	unit	(see	fig.	5-36).



We	can	discover	where	the	error	lies	by	taking	the	tangent	function	of	the	angles
marked	α	and	β	so	that	we	can	discover	their	measures.	Remember,	they	ought
to	be	equal	if	they	lie	on	the	diagonal.7

	
The	difference,	β	–	α,	is	merely	1.2°,	yet	it	is	enough	to	show	that	they	are	not	on
the	diagonal.
You	will	notice	that	the	segments	above	were	2,	3,	5,	8,	and	13—all	Fibonacci

numbers.	Moreover,	you	can	prove8	 that	 	where	n	≥	1.	The
rectangle	has	dimensions	5	and	13,	and	the	square	has	a	side	length	8.	These	are
the	fifth,	sixth,	and	seventh	Fibonacci	numbers:	F5,	F6,	F7.



This	relationship	tells	us	that

	
This	puzzle	can	then	be	done	with	any	three	consecutive	Fibonacci	numbers	as
long	 as	 the	 middle	 number	 is	 an	 even-numbered	 member	 of	 the	 Fibonacci
sequence	 (i.e.,	 in	 an	 even	 position).	 If	 we	 use	 larger	 Fibonacci	 numbers,	 the
parallelogram	will	be	even	less	noticeable.	Whereas	if	we	use	smaller	Fibonacci
numbers,	then	our	eye	cannot	be	deceived,	as	in	figure	5-37.

Here	is	the	general	form	of	the	rectangle	(fig.	5-38).

To	do	this	properly	without	having	the	“missing	area,”	the	only	such	partitioning
—amazingly	enough—is	with	the	golden	ratio,	 ,	as	seen	in	figure	5-39.



The	areas	of	the	rectangle	and	the	square	are	equal	here	(fig.	5-39)	as	we	shall
show	now:

The	area	of	the	square	

the	area	of	the	rectangle	

Thus	 the	 areas	 of	 the	 square	 and	 the	 rectangle	 under	 this	 partition	 are	 equal.
Once	again,	we	find	that	the	power	of	the	golden	ratio	manifests	itself	in	giving
proper	meaning	to	this	dilemma.

CURIOSITY	15

Although	 it	may	seem	a	bit	contrived,	 this	appearance	of	 the	golden	section	 is
quite	surprising	and	requires	us	 to	make	a	“cross”	composed	of	 five	congruent
squares	of	side	length	1	and	cover	it	with	a	square	that	has	side	length	a	and	an
area	equal	to	that	of	the	cross.	The	square	should	be	placed	in	such	a	fashion	that
four	small	squares	are	formed	in	the	corners,	as	shown	in	figure	5-40.	These	four
small	squares	will	have	sides	 	and	the	sides	of	 the	 large	square	will	have
length	 	 Furthermore,	 the	 golden	 section	 also	 appears	 in	 the	 sum	of	 the
areas	of	the	portions	of	the	cross	that	are	not	covered	by	the	large	square.	This

turns	out	to	be	



By	inspecting	figure	5-40,	it	is	clear	that	if	the	area	of	the	square	is	equal	to	the
area	of	the	cross,	namely	5	(since	it	is	comprised	of	five	unit	squares),	then	the
side	of	the	square	is	
We	can	see	 in	figure	5-40	that	 the	side	of	 the	 large	square	 is	

which	then	leads	to	
Finally,	to	get	the	sum	of	the	areas	of	the	parts	of	the	cross	that	are	not	covered
by	the	square	[i.e.,	four	rectangles,	each	with	dimensions	1	×	(1	–	b)],	we	do	the

following:	
As	we	predicted,	we	arrive	at	a	value	involving	the	golden	ratio—again	at	a	time
when	you	might	have	least	expected	it.

CURIOSITY	16

There	are	times	when	the	golden	section	just	happens	to	be	in	a	commonly	seen
design.	Take	the	Cross	of	Lorraine,	which	was	suggested	by	General	Charles	de
Gaulle	(1890–1970)	for	the	French	flag	(fig.	5-41)	to	represent	the	Free	French
as	 resistance	 to	 the	Nazi	 occupation;	 it	 recalled	 Joan	 of	Arc	 (ca.	 1412–1431),
who	bore	this	symbol	on	her	flag	in	battle	against	the	English.	Today,	it	can	be
seen	as	a	140-foot	monument	in	de	Gaulle's	hometown	of	Colombey-les-Deux-
Églises	 (fig.	5-42).	 It	 can	also	be	seen	 (in	partial	 form)	on	 the	coat	of	arms	of
Hungary.



	
This	 cross	 is	 constructed	 by	 thirteen	 congruent	 squares	 of	 side	 length	 1,	 as
shown	in	figure	5-43.	If	we	now	construct	a	 line	segment	 that	divides	the	total
cross	area	into	two	equal	parts,	then	a	most	unexpected	result	appears.	This	area-
dividing	 line	 segment	 QPS	 partitions	 each	 of	 the	 small-square	 sides	 at	 its
endpoints,	Q	and	S,	into	the	golden	ratio!



We	 will	 now	 set	 out	 to	 justify	 this	 remarkable	 occurrence—this	 strange	 and
unexpected	 emergence	 of	 the	 golden	 section.	 Since	 the	 cross	 is	 comprised	 of
thirteen	unit	squares,	its	total	area	is	13.	The	area	of	half	the	cross	is	comprised
of	ΔCQS	plus	four	unit	squares	(see	fig.	5-44).
We	 will	 seek	 the	 lengths	 of	 BQ	 =	 x	 and	 FS	 =	 y,	 since	 that	 will	 help	 us

determine	if	Q	and	S	divide	the	sides	of	the	unit	squares	in	the	golden	ratio.

For	 the	 triangle	 ΔCQS	 we	 find	 	 This	 area	 can	 also	 be



represented	by	
Equating	 these	 two	 expressions	 for	 the	 same	 area	 gives	 us	 the	 equation	

	 This	 then	 leads	 us	 to	 the	 following	 algebraic	 steps:	

Because	 ΔBQP	 and	 ΔDPS	 are	 similar,	 we	 get	 	 which,	 when

expressed	in	terms	of	x	and	y,	is	 	and	so	

We	then	equate	the	two	values	we	found	for	x	and	get	
This,	amazingly,	leads	us	directly	to	the	equation	that	yields	the	golden	ratio:

y2	 +	 y	 –	 1	 =	 0,	 whose	 roots	 are:	 y	 =	 –	 	 (which	 we	 cannot	 use	 since	 it	 is

negative),	and	



Then

Note:	The	algebra	that	gave	us	this	result	is

Now	that	we	have	the	values	for	x	and	y,	we	can	show	that	the	points	Q	and	S
partition	the	segments	AB	and	FG,	respectively,	in	the	golden	ratio.	For	segment

AB:	
and	for	segment	FG:

Therefore,	we	have	shown	that	when	the	segment	PQS	divides	the	cross	into	two
equal	 areas,	 the	 points	 Q	 and	 S	 must	 partition	 the	 segments	 AB	 and	 FG,
respectively,	in	the	golden	ratio.

CURIOSITY	17

To	 experience	 our	 next	 curiosity,	we	 begin	with	 a	 square	 and	 construct	 a	 line
segment	 from	 one	 vertex	 to	 the	 midpoint	 of	 one	 side.	 We	 then	 come	 to	 the
critical	part	of	the	construction,	that	is,	to	construct	a	circle	tangent	to	the	other
two	 sides	 (as	 shown	 in	 fig.	 5-45,	 the	 sides	 are	 BC	 and	CD)	 and	 to	 the	 line
segment,	DE,	which	we	just	drew	inside	the	square.	The	golden	ratio	will	now
appear	 in	 several	 places.	 First,	 the	 line,	DK,	 from	 a	 vertex	 of	 the	 square	 and
through	the	center	of	the	circle9	intersects	the	side	BC	at	point	K,	and	partitions



it	into	the	golden	ratio:	 	for	convenience	we	use	the	side	of	the	square	as
length	1.
Furthermore,	 the	 radius	 of	 the	 circle,	 	 As	 if	 this	 were	 not	 astounding

enough,	 the	 circle's	 tangency	 points	 with	 the	 sides	 of	 the	 square	 provide	 the
golden	 section	 of	 the	 sides,	 and	 the	 circle's	 third	 tangency	 point	 partitions	 the
interior	line	segment	in	the	the	ratio	2	:	 .
Now	let's	inspect	this	in	a	bit	more	detail.

In	 figure	 5-46	 we	 have	 square	 ABCD,	 with	 	 Point	 F	 is	 the
intersection	of	the	lines	CB	and	DE.	Since	AB	||	CD,	it	follows	that	
which	gives	us	 	and	then	we	get	x	=	1.
In	 right	 triangle	 CDF	 the	 Pythagorean	 theorem	 gives	 us	

Furthermore,	because	

The	radius,	r,	of	the	inscribed	circle	of	ΔCDF	can	be	found	from	the	formula10	
	where	a	=	CD,	b	=	CF,	and	c	=	DF	or	 in	 the	following	way:	Since

ΔFBE	~ΔFCD,	we	have	x	=	BF	=	1,	and	we	have
CF	=	BC	+	BF	=	1	+	1	=	2.
Therefore,	 	 and	 also	FG	 =

CF	–	CG	=	2	–	r.
Since	FJ	=	FG,	 	whereupon	it	follows	that



Recall	 that	 the	 center	 of	 the	 inscribed	 circle	 is	 the	 point	 of	 intersection	 of	 the
angle	 bisectors	 of	 the	 triangle.	 When	 the	 Pythagorean	 theorem	 is	 applied	 to

ΔDHM	(fig.	5-46),	we	have	
The	next	few	steps	follow	easily:



which	shows	the	partition	into	the	golden	ratio	as	we	anticipated	above.
Analogously,	 	 Further	 to	 the	 list	 of	

appearances	 that	 we	 mentioned	 earlier,	 we	 can	 admire	 the	 following:	

We	now	need	to	inspect	the	partitioning	that	point	K	does	to	BC,	where	K	is	the
point	at	which	the	bisector	of	 	meets	CF.	Point	K	divides	the	side	CF	of
triangle	CDF	proportional	with	the	other	two	sides	CD	and	DF.

With	FK	=	CF	–	CK	=	2	–	CK	we	get

Then	 	It	follows	that	
We	are	finally	ready	to	set	up	the	ratio	we	originally	sought:

which	 tells	us	 that	 the	 angle	bisector	partitions	 the	opposite	 side	of	 the	 square



into	 the	 golden	 ratio.	 When	 we	 look	 back	 at	 the	 simplicity	 of	 the	 original
proposition—setting	aside	the	computation	that	brought	us	here—again	we	have
a	truly	wonderful	appearance	of	the	golden	ratio.

CURIOSITY	18

Here	 we	 have	 a	 little	 treat!	Where	 you	might	 least	 expect	 it,	 once	 again,	 the
golden	ratio	pops	up.
In	 figure	 5-47,	we	 have	 a	 square	 partitioned	 into	 four	 congruent	 trapezoids

and	a	smaller	square;	all	five	parts	have	the	same	area.	If	the	sides	of	the	smaller
(inner)	 square	 have	 length	 1,	 then	 the	 sides	 (a)	 of	 the	 larger	 square	will	 have
length	 	and	the	height	of	each	trapezoid	will	have	length	
In	figure	5-48,	we	have	a	square	partitioned	into	four	congruent	rectangles	and

a	 smaller	 square;	 again,	 all	 five	 parts	 have	 the	 same	 area.	 If	 the	 sides	 of	 the
smaller	(inner)	square	have	length	1,	 then	the	the	sides	of	 the	larger	square	(a)
will	 have	 length	 	The	widths	 (shorter	 sides)	 of	 each	of	 the	 rectangles	 then
have	 length	 	and	 the	 longer	 sides	have	 length	a	–	x	=	 .	These	are	 rather
unanticipated	appearances	of	the	golden	section!	Let's	see	why	this	is	true.



In	both	figures	5-47	and	5-48,	 	Let's	find	the	area	of	one	of
the	trapezoids	in	figure	5-47.	Remember,	the	area	of	a	trapezoid	is	equal	to	one-
half	the	product	of	the	height	and	the	sum	of	the	bases.

Since	the	area	of	one	of	the	trapezoids	is	the	same	as	the	smaller	square,	we

get:	 	 Then	 to	 find	 x,	 we	 use	 the	 earlier

equation:	
In	figure	5-48,	the	area	of	the	square	is	to	be	five	times	that	of	the	inner	square,
or	 5	 times	 1.	 Therefore,	 a	 =	 	 for	 a,	 we	 get	 	 whereupon	 it

follows	that	



Then

Once	again,	the	appearance	of	 	is	clearly	justified.

CURIOSITY	19

Just	as	we	were	surprised	with	 the	unexpected	appearance	of	 	 in	 the	previous
curiosity,	so,	too,	it	is	astonishing	that	the	golden	section	will	once	again	appear
where	 we	 have	 no	 reason	 to	 expect	 it,	 as	 in	 the	 following	 configuration.
Consider	the	rectangle	ABCD,	which	in	figure	5-49	has	points	P	and	Q	on	lines
AB	 and	 BC,	 respectively,	 so	 that	 it	 is	 partitioned	 into	 four	 triangles:	 ΔDPQ,
ΔADP,	ΔPBQ,	and	ΔCDQ,	where	the	three	shaded	triangles	have	the	same	area.
This	 produces	 an	 astonishing	 appearance	 of	 ,	 namely	 that	 points	 P	 and	 Q
partition	the	sides	AB	and	BC	into	the	golden	section.11	Imagine,	the	location	of
points	P	and	Q	is	determined	to	create	equal	areas	and	results	in	partitioning	the
line	on	which	they	lie	in	the	golden	section.

(Although	 the	 justification	 of	 this	 is	 rather	 simple,	 we	 shall	 provide	 it	 in	 the
appendix	so	as	not	to	disturb	the	flow	of	curiosities	here.)	CURIOSITY	20
This	 time	we	 shall	 begin	with	 lengths	 related	 to	 ,	 by	 constructing	 a	 triangle,
ΔABC,	with	sides	of	 lengths	 	and	show	that	 it	will
produce	a	right	triangle.	(See	fig.	5-50.)



Using	the	converse	of	the	Pythagorean	theorem,	we	will	show	that	this	triangle
is,	in	fact,	a	right	triangle,	since12

and	therefore,	AC2	+	BC2	=	AB2,	which	tells	us	that	 	is	a	right	angle.
Furthermore,	the	area	of	this	triangle	(in	terms	of	 )	is

which	is	obtained	by	taking	one-half	the	product	of	the	legs	of	this	right	triangle:

If,	as	in	figure	5-51,13	we	have	BD	=	1	and	we	construct	the	median	(CM)	and
the	altitude	 (CD)	 to	 the	hypotenuse	AB,	we	 find	 the	distance	between	 them	 is	



There	are	some	more	little	features	worth	citing,	namely	that	the	areas	of	the	two
triangles	 determined	 by	 the	 altitude	CD	 also	 can	 be	 expressed	 in	 terms	 of	 the

golden	ratio:	 .14

This	shows	that	
	
And,	last,	but	not	least,	the	ratio	of	the	side	lengths	is

CURIOSITY	21

Our	next	curiosity	will	build	on	the	previous	one.	We	shall	begin	by	taking	the
configuration	 that	we	 produced	 in	Curiosity	 20	 and	 represent	 the	 lengths	 in	 a
somewhat	 different	 way,	 yet	 keeping	 the	 values	 the	 same.	 Thus,	 we	 have	 the

lengths	as	shown	in	figure	5-52:	



We	will	 now	 draw	 a	 series	 of	 perpendiculars	 and	 parallels	 in	 succession.	 The
perpendicular	line	to	AB	at	B	(=B1)	intersects	the	line	through	A	and	P	(=P1)	at
P2,	 the	 parallel	 line	 to	B1P1	 through	P2	 intersects	AB	 at	B2.	 (See	 fig.	 5-53.)	

This	process	can	then	continue	as	shown	in	figure	5-54.



As	one	might	have	expected	by	now,	we	have	a	geometric	representation	of	the
powers	of	the	golden	ratio	and	at	the	same	time	the	Fibonacci	numbers	(see	also
chap.	4,	pp.	92,	127):

	

	
	
Once	again	 the	golden	 ratio	provides	us	with	yet	another	example	of	 the	close
connection	 between	 algebra	 and	 geometry.	Were	we	 to	 do	 this	 in	 reverse,	we
would	have	the	segments	as	noted	in	figure	5-55.



This	 would	 give	 us	 the	 sequence	 	 for	 which	 the
analogous	 construction	 of	 the	 triangles	 produces	

We	 can	 also	 construct	 a	 rectangular	 “spiral,”	where	 the	nth	 side	 lengths	 are
these	powers	of	 	 (fig.	5-56).	The	spiral	approaches	 the	 limit	point	determined
by	the	intersection	B0B2’	and	B1'B3'.



The	 length	 of	 this	 rectangular	 “spiral”	 is	 finite,	 namely	

CURIOSITY	22

Yet	 again	we	 have	 a	 simple	 situation	 in	which	 the	 golden	 ratio	 appears	 quite
unexpectedly!	 We	 begin	 with	 a	 parallelogram	 ABCD	 with	 an	 acute	 angle	 of
measure	60°,	and	then	two	isosceles	triangles	are	formed	as	shown	in	figure	5-
57.	The	two	parallelograms,	ABCD	and	DEBF,	are	similar	if	their	corresponding
sides	 are	 in	 the	 same	 ratio,	 (a	 +	 x)	 :	a	 =	a	 :	 x.	 This	 should	 remind	 us	 of	 the
golden	ratio,	where	the	ratio	is	then	( 	:	1.
Then	 the	 ratio	 of	 the	 areas	 is	 the	 square	 of	 this	 ratio	 of	 similitude,	 namely	

	This	is	easily	justified.



From	 the	 similarity	 of	 the	 parallelograms,	 we	 have	 	 which	 is	 also	
	This	will	lead	us	to	a	now-familiar	quadratic	equation:	x2	+	ax	–	a2	=	0,

where	the	positive	root	is	 .	Therefore,	the	ratio	of	the	corresponding	sides
of	the	similar	parallelograms	is	 	and	the	ratio	of	the	areas	of	the	two
parallelograms	is	

Alternatively,	we	can	also	show	the	ratio	of	the	areas	of	the	two	parallelograms

independently.	The	height,	DG,	of	ΔADE	is	
which	also	serves	as	the	height	of	each	of	the	two	parallelograms.	Therefore,	we
can	 calculate	 the	 area	 of	 each	 of	 the	 parallelograms	 using	 the	 formula:	 the
product	of	the	base	and	the	height.
	



	

	
Then	the	ratio	of	the	areas	of	the	two	parallelograms	is
	

	
This	can	also	be	written	as	

CURIOSITY	23

The	 trapezoid	 presents	 us	with	 a	 curious	 occurrence	 of	 the	 golden	 section.	 In
figures	5-59	and	5-60,	we	have	trapezoids	ABCD,	one	isosceles	(fig.	5-60)	and
one	not	isosceles	(fig.	5-59).	The	line	segment	FE,	which	joins	points	E	and	F	on
the	sides	of	the	trapezoids,	is	parallel	to	the	bases.	The	bases	have	lengths	3b	and

b,	as	shown.	The	length	of	
We	 call	 FE	 the	 root	 mean	 square,15	 and	 it	 has	 the	 property	 that	 divides	 the
original	 trapezoid	into	 two	trapezoids	of	equal	area.	Of	particular	 interest	 to	us
here	 is	 that	 this	 segment,	FE,	 partitions	 the	 two	 sides	 of	 the	 trapezoid	 in	 the
golden	section.



So	far,	the	following	is	given:	The	parallel	bases	are	AB	=	a,	CD	=	b,	and	a	=	3b.
Also

Since	b	<	a,	we	then	have	b	<	c	<	a,	as

This	 justifies	 that	 the	 line	 segment	EF	 actually	does	 exist,	 since	 its	 length	 lies
between	the	 lengths	of	 the	bases.	We	shall	now	refer	 to	figures	5-61	and	5-62,
where	DG	||	BC	and	BG	=	CD	=	b.	Then	because	of	the	similarity	of	ΔADG	and

ΔDFH,	we	get	
	



This	allows	us	to	conclude	that	 	and	once	again	we	arrived	at	our	golden
ratio!

The	 altitudes	 of	 the	 trapezoid	 are	 also	 partitioned	 into	 the	 golden	 section.	 In
figures	5-61	and	5-62,	we	note	that	the	altitudes	DK	=	KL	+	DL	=	h1	+	h2	and	DL
=	h2	give	us	the	golden	ratio	as	h2	:	h1	=	 	:	1.	We	leave	to	the	reader	to	show
that	the	area	of	the	original	trapezoid	is,	in	fact,	divided	in	half	by	FE.
For	 the	 ambitious	 reader,	 we	 offer	 a	 concise	 procedure	 to	 construct	 this

configuration	in	the	appendix.

CURIOSITY	24



Here	we	will	 consider	 an	 isosceles	 trapezoid	 that	 can	 have	 an	 inscribed	 circle
(one	tangent	 to	each	of	 its	four	sides),	and	where	the	trapezoid's	circumscribed
circle	 has	 its	 larger	 base	 as	 the	 circumcircle's	 diameter.	 This	 special	 trapezoid
has	the	golden	ratio	embedded	in	it.
We	will	use	the	isosceles	trapezoid	ABCD	(shown	in	fig.	5-63)	with	sides	AB

=	a,	BC	=	b,	CD	=	c,	and	AD	=	b.	It	has	an	inscribed	and	a	circumscribed	circle,
where	AB	||	CD	and	AB	=	a,	which	is	the	diameter	of	the	circumscribed	circle	c0.
Then	 the	 radius	 of	 the	 circumscribed	 circle	 is	 	We	 then

have	the	following	unexpected	properties:	 	and	the	radius	of

the	inscribed	circle	is	

As	a	bonus,	we	also	can	show	that	the	golden	ratio	also	appears	in	relation	to	an
angle,	 namely	 when	 the	 sine	 function	 is	 applied	 to	

(The	justification	for	these	appearances	of	the	golden	ratio	can	be	found	in	the
appendix.)

CURIOSITY	25

Sometimes	a	sighting	of	the	golden	section	is	not	only	unexpected	but	also	not
intuitively	 obvious.	 Here	 we	 begin	 with	 a	 right	 pyramid16	 with	 a	 rectangular
base.	All	lateral	sides	are,	therefore,	isosceles	triangles	as	shown	in	figure	5-64.
A	plane	containing	one	side	(BC)	of	the	base	and	intersecting	the	opposite	lateral



face	 in	 line	 segment	 EF	 divides	 the	 volume	 of	 the	 pyramid	 in	 half.	 The
fascinating	 thing	here	 is	 that	 the	points	E	 and	F	 partition	 the	 lateral	 edges,	AS
and	DS,	respectively,	in	the	golden	section,	that	is,	 	The	same
holds	true	for	point	F	with	regard	to	DS,	namely	

CURIOSITY	26

This	 curiosity	may	appear	 to	be	 a	bit	 contrived,	yet	 it	 shows	 the	 strange	ways
that	the	golden	section	appears	where	it	may	be	least	expected.	We	begin	with	a
triangle	 	 as	 shown	 in	 figure	 5-65.
We	will	call	 the	point	C	=	C0,	 for	convenience,	and	it	will	allow	us	 to	make	a
generalization	 at	 the	 end	 of	 this	 curiosity.	We	 now	 bisect	 	 with	 a	 line
segment	that	intersects	AB	at	point	C_1.	At	the	point	C	(or	C0),	we	will	construct
a	perpendicular	 to	C–1C0,	which	will	 intersect	 the	 line	AB	at	point	C1.	Then	at
point	C1,	we	will	construct	a	perpendicular	to	C0C1	to	meet	BC	at	C2.	Repeating
the	process,	we	have	at	C2	the	perpendicular	to	C1C2	intersecting	AB	at	C3.	We
then	 get	 points	 	 in	 the	 same	 fashion.17	 The	 result	 is

that	



and

To	 see	 why	 this	 holds	 true,	 we	 shall	 go	 back	 to	 the	 original	 triangle	 ΔABC,
where	 	If	we	let	BC–1	=	x,	then	AC–1	=	2–x.

Since	CC–1	is	an	angle	bisector,	

which	then	gives	us	 	We	then	have	 	and	
In	 general,	 the	 right	 triangles	 of	 the	 form	 	 are	 all	 similar	 to	 each

other.	Therefore,	
for	n	=	0,	1,	2,	3,….
	



With

we	get	 	In	general,	for	n	=	0,	1,	2,	3,…
Without	the	distraction	of	the	auxilary	line	in	figure	5-65,	this	sort	of	“spiral”

can	be	a	bit	more	attractive—as	shown	in	figure	5-66.

CURIOSITY	27

Our	next	curiosity	will	not	be	geometric	but	rather	use	a	pattern	that	should	not
prove	to	be	too	strange,	although	it	may	look	so	at	the	start.	We	will	consider	a
sequence	 of	 1s	 and	 0s	 as	 shown	 here:	

The	construction	of	this	sequence	is	quite	simple.	We	begin	with	a	1.	Then	the
next	step	is	to	replace	the	1	with	10,	as	you	can	see	in	the	listing	below.	Then,	in
each	succeeding	step,	we	replace	the	1s	with	10	and	the	0s	with	1.



GOLDEN	STRINGS

10
101
10110
10110101
1011010110110
101101011011010110101
1011010110110101101011011010110110
….
	
Another	 way	 of	 looking	 at	 this	 sequence	 development	 is	 to	 take	 the	 third
generation	(101)	and	add	to	it	the	previous	generation	(10),	to	get	101	1 	To	get
the	 next	 generation,	 we	 take	 the	 previous	 one,	 101	 10,	 and	 add	 to	 it	 its
predecessor,	 to	 get	 10110	101.	 In	 general	 terms,	 to	 get	 the	nth	 generation,	we
take	the	(n	–	1)	generation	and	add	to	it	the	(n	–	2)	generation.	This	sequence	is
often	called	the	golden	string.
By	now	you	may	wonder	what	this	has	to	do	with	the	golden	ratio.	Consider

the	function	

Let	 us	 graph	 this	 equation	 (y	 =	 x),	 as	 shown	 in	 figure	 5-67.	 The	 graph	 is	 a



straight	line	containing	no	lattice	point.	Let	us	indicate	each	point	that	this	line
crosses	a	horizontal	line	with	a	1,	and	each	time	it	crosses	a	vertical	line	with	a	
Beginning	after	the	origin,	we	will	list	the	numbers	along	the	line,	as	shown	in
figure	5-67.	We	 then	get	 the	 following:	10110101101101,	which	 is	 the	golden
sequence.	The	graph	of	the	golden	ratio	was	able	to	generate	this	sequence.
The	procedure	for	creating	the	golden	string	may	remind	you	of	the	Fibonacci

numbers.	Consider	the	table	in	figure	5-68.

Counting	 the	 number	 of	 0s	 and	 1s	 reminds	 us	 of	 the	 Fibonacci	 numbers.
Furthermore,	if	we	take	the	ratio	of	the	numbers	of	0s	to	the	number	of	1s,	we
get	the	golden	ratio—again!
Another	 strange	 aspect	 of	 the	 golden	 string	 can	 be	 seen	with	 the	 following

instructions.	 One	 might	 say	 that	 the	 sequence	 is	 self-reproducing.	 To
demonstrate	 this,	 we	 will	 begin	 with	 the	 golden	 string:	

We	shall	focus	on	all	the	10s	in	the	string	as	underlined	below:

We	next	replace	each	of	these	10s	w|th	a	2,	as	shown	here:

Next,	we	will	replace	all	the	2s	with	a	1	and	all	the	1s	with	a	0,	which	gives	us

or	when	written	together:	

Yes,	this	is	our	original	string	self-generated	as	we	claimed	at	the	outset.



CURIOSITY	28

A	nice	recreational	activity	in	arithmetic	is	to	see	if	one	can	represent	the	natural
numbers	using	only	 four	4s.	This	 sort	 of	 exercise	 is	 shown	below	 for	 the	 first
twenty	natural	numbers	and	zero.



	
By	 now,	 one	 would	 anticipate	 that	 this	 must	 also	 be	 possible	 for	many	 other
numbers.	You	might	want	to	continue	this	list.	However,	when	we	come	to	our
main	subject	here,	the	golden	ratio,	we	would	not	expect	to	be	able	to	represent
this	 number,	 since	 it	 is	 not	 a	 natural	 number.	 Well,	 again	 the	 golden	 ratio
surprises	us	with	 its	ubiquity.	Here	 is	 the	golden	 ratio	expressed	using	 four	4s

(4!,	or	4	factorial,	is	defined	as	1	·	2	·	3	·	4):	
Yes,	this	is	precise!
You	can	show	that	this	is	equivalent	to

as	follows:

In	this	chapter,	we	have	tried	to	demonstrate	how	the	appearances	of	the	golden
ratio	can	seem	to	be	practically	limitless.	Often	rather	unrelated	situations	have
the	golden	ratio	embedded.	We	hope	that	the	reader	will	be	motivated	to	search
for	other	hidden	golden	ratio	occurrences.

LAST,	BUT	NOT	LEAST…



In	the	mathematical	community,	π	lovers	celebrate	March	14	as	π-day,	since	its
short	 form	 is	 3-14.	And	 at	 1:59,	 they	will	 be	 jubilant!	 (Can	 you	guess	why?).
Fittingly,	we	should	now	celebrate	 	on	January	6,	whereupon	 	enthusiasts	will
be	particularly	jubilant	at	18:03	o'clock!



Chapter	6

The	Golden	Ratio
in	the	Plant	Kingdom1

The	spiral	patterns	of	the	sunflower,	fir	cone,	and	the	pineapple	have	fascinated
plant	 biologists	 for	 hundreds	 of	 years,	 and	 the	 attempt	 to	 account	 for	 their
appearance	is	still	an	exciting	field	of	research	today	(called	phyllotaxis).	These
considerations	 provide	 excellent	 examples	 of	 how	 simple	 mathematical
description	and	modeling	can	contribute	to	our	understanding	of	complex	plant
growth	 processes.	 One	 of	 the	 more	 interesting	 examples	 is	 the	 informative
application	of	Fibonacci	numbers	to	analyze	certain	repetitive	or	regular	patterns
in	nature,	especially	in	the	plant	kingdom.
When	 one	 considers	 the	 enormous	 variety	 of	 growth	 forms	 in	 the	 plant

kingdom,	it	seems	even	more	astounding	that	 the	Fibonacci	numbers	are	found
so	 abundantly.	 For	 example,	 if	 we	 count	 the	 number	 of	 clockwise	 or
counterclockwise	spirals	 in	a	sunflower	or	 in	a	pineapple,	 then	usually	we	will
find	two	successive	Fibonacci	numbers,	Fn.	This	is	true	even	in	instances	where
we	 would	 hardly	 expect	 them,	 such	 as	 in	 the	 flower	 heads	 (capitulum)	 of
dandelions.	 After	 all	 the	 sailing	 dandelion	 seeds	 have	 been	 dispersed,	 a
Fibonacci	 spiral	 pattern	 (fig.	 6-1d	 and	 6-2a)	 with	 34	 clockwise	 and	 55
counterclockwise	spirals	can	be	seen.	 In	 the	case	of	 the	crassulacean	succulent
(Aeonium	tabuliforme)	(fig.	6-3),	5	clockwise	and	8	counterclockwise	spirals	can
be	clearly	observed.



Growth	phases	of	the	dandelion	flower	head	(Photos:	Mascolus).



Fibonacci	spiral	patterns:

(a)	Dandelion	capitulum (b)	Marguerite	(daisy)
		flower	head

(c)	Pineapple
scale	pattern

	
In	 the	 following	 discussion,	 we	 will	 attempt	 to	 establish	 a	 universal	 law	 to
explain	the	frequent	occurrences	of	the	Fibonacci	numbers	in	the	plant	kingdom.

FIBONACCI	NUMBERS	AND	THE	GOLDEN	ANGLE



FIBONACCI	NUMBERS	AND	THE	GOLDEN	ANGLE

The	Fibonacci	 numbers	 have	 a	 close	 connection	 to	 the	golden	angle,	which	 is
defined	 as	 follows	 (see	 p.	 136):	 The	 golden	 angle	 is	 attained	 by	 dividing	 the
circumference	of	a	circle	in	the	golden	ratio.	In	this	way,	two	angles	are	created
that	 are	 here	 defined,	 respectively,	 as	 the	 large	 and	 small	 golden	 angles	 as

follows:	 	and	 	(fig.	6-4).

	
An	approximation	of	 the	golden	angle	 is	often	observed	 in	nature	as	 the	angle
between	successive	leaves	or	the	divergence	angle	(fig.	6-5).	The	golden	angle	is
already	apparent	early	in	the	history	of	plant	development.



	
The	 association	 between	 the	 golden	 angle	 and	 the	 Fibonacci	 numbers	 was
empirically	proven	for	the	first	time	in	1830	by	the	German	geologist,	botanist,
and	poet	Karl	Friedrich	Schimper	(1803–1867)2	(see	fig.	6-6).

We	established	earlier	(chap.	3)	that	
Therefore,	the	sequence	of	fractions	of	the	divergence	angle,



has	the	limiting	value

This	equates	exactly	to	the	golden	angle:

In	 1979,	 the	 central	 role	 that	 the	 golden	 angle	 played	 in	 phyllotaxis	 was
impressively	illustrated	through	computer	simulations	by	H.	Vogel	in	his	paper
“A	 Better	 Way	 to	 Construct	 the	 Sunflower	 Head.”4	 Vogel	 made	 two	 model
assumptions	 about	 the	distribution	of	 the	 florets	 in	 the	 sunflower	head	 (i.e.,	 in
the	capitulum):

1.	 The	divergence	angle	is	constant.
2.	 The	packing	is	compact.

The	constancy	of	the	divergence	angle	means	that	successive	establishments	are
developed	with	the	constant	angle	a;	also	the	compact	packing	requires	that	the
increase	 in	 the	 area	 of	 the	 capitulum	 is	 the	 same	 as	 the	 area	 of	 the	 newly
established	growth.5	With	 the	computer	model,	 the	 influence	of	 the	divergence
angle	α	=	λ	·	360°	can	be	assessed	for	various	lambda	(λ)	parameters	(fig.	6-7).



The	 connection	 between	 the	 divergence	 angle	 of	 the	 real	 number	 λ	 and	 the
number	 of	 visible	 spirals	 or	 contact	 parastichies	 is	 determined	 by	 the
development	of	the	continued	fraction	(see	the	appendix).
The	convergent	denominators	of	the	golden	angle	are	precisely	the	Fibonacci

numbers,	which	explains	the	above	occurrences	and	coincides	with	the	number
of	spirals	in	the	same	rotational	direction.



Spiral	patterns	generated	with	the	Vogel	model	for	the	golden	angle.	The	Fibonacci	spiral	pattern	has	been
made	visible	through	coloring	every	fifth,	eighth,	thirteenth,	and	twenty-first	spiral.

PARASTICHY	NUMBERS,	DIVERGENCE	ANGLE,
AND	GROWTH

It	 is	an	empirical	fact	 that	during	plant	development,	 the	growth	h	 (the	vertical
interval	 between	 leaf	 nodes)	 lessens.	 This	 can	 be	 verified	 by	 taking	 a	 walk
through	the	garden	and	inspecting	the	plants	(fig.	6-9).

This	 is	 the	 source	of	 the	 alternation	 in	 the	 spiral	 pattern	 and	 can	be	 explained
more	easily	as	a	cylindrical	lattice.	For	this	purpose,	we	observe	the	points	of	a
helix	 on	 a	 cylinder	 surface	 with	 cylinder	 radius	R,	 growth	 h,	 and	 divergence
angle	α	=	360°	·	λ	(λ	is	the	determinant	divergence	for	this	angle).	If	a	cylinder
lattice	is	normalized	to	C	=	2π	 ·	R	=	1	and	rolled	out	into	a	plane,	we	obtain	a
plane	point	 lattice,	which	 is	 explicitly	 characterized	by	 (h,	 λ)	 (fig.	 6-10).6	The
biological	sequence	of	new	growth	adheres	to	the	natural	numbers,	whereby	the
youngest	 is	depicted	as	number	1	and	 the	second	youngest	with	 the	number	2,
and	 so	on.	From	a	geometric	viewpoint,	 it	 is	 not	 the	 age	of	 the	growth	 that	 is



important	but	rather	its	relation	to	neighboring	growth.

For	the	lattice	in	Figure	6-11,	the	points	2	and	3	are	the	immediate	neighbors	of
the	origin.	This	creates	2	counter	clockwise-rotating	contact	parastichies	on	the
cylinder	and	3	clockwise-rotating	contact	parastichies,	respectively.	It	is	said	that
the	parastichies	pair	(2,	3)	belongs	to	the	lattice.	Through	a	reduction	in	growth
of	the	interval,	point	5	replaces	point	2	as	the	second	neighbor	of	the	origin.	That
is	to	say,	the	parastichies	pair	changes	the	lattice	from	(2,	3)	to	(5,	3).

Although	a	point	 lattice	can	be	constructed	for	every	parameter	pair	(h,	λ),	 the
lattices	that	have	their	origin	in	biological	growth	processes	are	often	subject	to



severe	 constraints.	 Because	 the	 phyllotactic	 lattice	 is	 often	 idealized	 as	 a
tangential	circle,	 these	 lattices	are	rhombic	(fig.	6-10b),	which	means	that	both
generating	vectors	are	of	the	same	length.	These	considerations	are	fundamental
for	 the	 so-called	 sphere	 packing	model	 that	 the	Dutch	 botanist	G.	 van	 Iterson
(1878–1972)	introduced	in	his	doctoral	thesis	in	1907.7	This	allows	us	to	explain
the	interrelationship	between	the	golden	angle	and	the	Fibonacci	numbers	in	the
case	of	an	ideal	(i.e.,	generated	with	fixed	divergence	angle)	and	of	consistently
changing	 divergence	 angles,	 according	 to	 the	Van	 Iterson	 diagram	 (see	 fig.	 6-
14).

CAUSAL	MODEL	OF	PHYLLOTAXIS

One	 explanation	 that	 has	 been	 proposed	 for	 the	 spiral	 pattern,	 as	 a	 functional
principle	 or	 morphological	 adaptation,	 is	 that	 it	 allows	 for	 optimal	 light
exploitation,	which	enables	maximal	photosynthetic	activity.8	However,	this	can
be	 disregarded	 because,	 on	 the	 one	 hand,	 these	 patterns	 are	 also	 found	 in
saltwater	algae,	which	are	kept	in	motion	by	the	continuous	water	currents	and
therefore	have	no	specific	advantage	in	being	arranged	according	to	the	golden
angle;	 and	 on	 the	 other	 hand,	 these	 patterns	 are	 also	 found	 in	 scale	 insects
(Placentalia)	 and	 seeds,	 which	 obviously	 have	 nothing	 to	 do	 with	 light
exploitation.9	Furthermore,	it	is	difficult	to	separate	cause	from	effect.
The	idea	of	a	black	box	in	which	over	millions	of	years	evolution	has	written

the	code	for	the	angles	of	the	leaf	primordia	is	also	not	very	helpful	in	explaining
the	functional	value	of	this	universal	phenomenon.
The	 following	model,	 on	 the	 other	 hand,	 ensures	 that	 the	 generation	 of	 the

Fibonacci	spiral	pattern	is	solely	a	result	of	biologically	plausible	principles.
The	mathematical	modeling	of	the	spiral	phyllotaxis	must	at	least	replicate	the

following	two	biological	processes:	the	processes	in	the	growing	tip	that	lead	to
the	generation	of	the	primordia	in	specific	locations	and	the	physical	interactions
of	the	primordia	during	their	alignment	on	the	hypothecium.



The	shoot	apical	meristem	 is	characterized	by	a	union	of	cells	with	a	high	cell
density	and	cell	division	rate.	The	apical	ring	is	situated	at	the	base	of	the	apical
meristem,	 which	 is	 where	 new	 biological	 primordia	 for	 leaves	 or	 flowers	 are
initiated.	 These	 can	 be	 seen	 as	 small	 balls	 in	 figure	 6-12.	 The	 location	 of	 the
primordia	 initiation	 is	 decisively	 regulated	by	 the	plant	 hormone	 auxin	 (Greek
auxein	=	growth,	enrichment).
E.	J.	H.	Corner	stated,	“The	spiral	pattern	of	 the	apical	meristem…is	one	of

the	biggest	wonders	of	 the	botanic.”10	A	simple	causal	model	 for	 this	wonder,
which	was	proposed	by	J.	N.	Ridley11	after	preliminary	work	from	I.	Adler,12	is
based	 on	 the	 contact-pressure	 hypothesis	 of	 the	 Swiss	 botanist	 Simon
Schwendener	 (1829–1919).13	 Mechanical	 forces	 were	 first	 recognized	 by	 the
German	 mathematician	 Johannes	 Kepler	 (1571–1630)14	 as	 the	 main	 factor
leading	to	specific	organic	forms	and	patterns.	In	this	way,	he	explained	that	the
rhombic	form	of	pomegranate	seeds	is	due	to	the	pressure	contact	on	the	seeds
during	growth.	As	a	result	of	these	pressure	forces,	tightly	packed	rhombic	seed
structures	are	generated.	Hubert	Airy	(1838–1903)	conjectured	in	1873	that	in	an
embryonic	 state,	 the	 plant	 has	 a	 large	 advantage	 from	 the	 compact	 packing
condition:	“In	the	bud	we	see	at	once,	what	must	be	the	use	of	 leaf-order.	It	 is
the	economy	of	space,	whereby	the	bud	is	entire	to	itself	and	presents	the	least
surface	to	outward	danger	and	vicissitudes	of	temperature.”15



The	compact	packing	of	the	leaf	primordia	makes	the	hypothesis	of	pressure-
force	 related	 forms	 in	 the	 early	 development	 stages	 plausible.	 Ridley's
simulation	of	the	contact	force	model	contains	the	following	steps:
Ridley	Algorithm
1.	Generation	of	a	new	primordium
2.	Interaction	of	the	primordia
3.	Expansion	of	the	primordia
The	 understanding	 of	 the	 position	 regulation	 of	 the	 primordia	 is	 of	 particular
significance.	 It	 is	 generally	 accepted16	 today	 that	 historically,	 after	 1868,	 the
position	 of	 the	 primordia	 initiation	 can	 be	 empirically	 explained	 using	 the
hypothesis	presented	by	the	German	botanist	Wilhelm	Hofmeister	(1824–1877):
A	 new	 primordium	 is	 initiated	 in	 the	 position	 of	 the	 apex	 ring,	which	 has	 the
largest	interval	of	all	already-existing	primordia.17
Simulations	of	an	improved	Ridley	model	have	shown	that	for	large	parameter

areas,	 the	 spiral	 pattern	 is	 generated	 exactly	 as	 the	 one	 most	 often	 seen	 in
nature.18	 For	 the	 sunflower,	 this	 is	 with	 a	 frequency	 of	 82	 percent	 Fibonacci
spirals	and	14	percent	Lucas	spirals.19
Similar	results	were	obtained	by	the	French	physicists	Stephane	Douady	and

Yves	Couder	in	their	famous	experiment	from	1992.20	Small	ferromagnetic	balls
were	 dripped	 into	 an	 oil	 pool	 while	 continuously	 lowering	 the	 frequency	 of
additions,	and	they	were	then	slowly	drawn	to	the	outside	by	an	external	magnet
field.	A	regular	Fibonacci	spiral	pattern	was	generated.	Since	 then,	 this	pattern
building	has	also	been	observed	in	many	other	nonbiological	systems.



In	 2002,	 Pau	 Atela	 and	 his	 colleagues,	 Christophe	 Gole	 and	 Scott	 Hotton,
constructed	a	dynamic	system	that	proved	that	the	fix	points	of	this	system	make
up	 exactly	 the	 stabile	 lattice,	 which	 in	 (d,	 h)-parameter	 space	 are	 given	 by	 a
truncated	Van	Iterson	diagram	(fig.	6-13).21	Through	the	influence	of	the	contact
pressure,	 the	growth	of	a	phyllotactic	pattern	during	decreasing	elongation	can
be	described	by	a	downward	zigzag	path.	The	path	 that	 starts	earliest,	 and	has
the	largest	sphere	of	influence,	is	the	Fibonacci	path	(1,	1)→(1,	2)→(2,	3)→…
→(m,	n)→(n,	m	+	n)→…,	which	becomes	closer	and	closer	to	the	straight	line	x
=	2	–	 .	Therefore,	it	is	no	wonder	that	the	Fibonacci	numbers	are	so	often	found
in	 the	 plant	 kingdom.	 The	 golden	 ratio,	 on	 the	 other	 hand,	 is	 a	 mathematical
construction	 that	works	 in	nature	 as	 is	 impressively	 shown	by	 the	Van	 Iterson
diagram	(fig.	6-14).

As	we	have	 seen,	 the	golden	 section	with	 its	partner	 the	Fibonacci	numbers	 is
embedded	in	nature.	You	might	want	to	search	for	the	many	other	manifestations
of	these	mathematical	aspects	in	nature.



Chapter	7

The	Golden	Ratio
and	Fractals1

When	 mentioning	 the	 golden	 ratio,	 perhaps	 the	 geometrical	 figures	 that	 most
promptly	 come	 to	 mind	 are	 regular	 pentagons,	 because	 of	 the	 relationship
between	their	sides	and	diagonals.	Or	maybe	even	the	famous	golden	rectangle.
But	 another	 realm	 in	which	 the	 golden	 ratio	 plays	 an	 important	 role	 is	 in	 the
construction	of	some	fractals.
One	of	the	easiest	ways	to	understand	the	nature	of	fractals	is	to	observe	trees.

The	way	in	which	each	branch	of	a	tree	bifurcates	into	smaller	branches	in	order
to	 create	 a	 fork	 constitutes	 the	 basic	 idea	 we	 try	 to	 replicate	 when	 creating
fractals:	that	is,	repeatedly	adding	to	a	geometric	figure	reduced	copies	of	itself,
or	in	some	cases,	replacing	parts	of	the	figure	by	those	reduced	copies,	according
to	a	determined	rule.
We	 can	 imitate	 a	 tree,	 or	 create	 a	 fractal	 tree,	 according	 to	 a	 very	 simple

geometric	rule:	We	start	with	a	trunk	(a	segment),	and	at	one	of	its	endpoints	we
create	 a	 bifurcation	 by	 placing	 two	 reduced	 copies	 of	 the	 trunk.	 At	 the	 other
endpoint	 of	 the	 two	 new	 stems,	 we	 will	 repeat	 the	 rule	 and	 create	 other
bifurcations,	as	shown	on	figure	7-1.

The	factor	of	reduction	and	the	angle	at	which	the	branches	will	be	placed	are	a
matter	of	choice.
Trees	 clearly	 show	 the	 idea	 of	 self-similarity,	 one	 of	 the	 most	 remarkable



characteristics	 of	 fractals:	 An	 object	 is	 made	 up	 of	 several	 smaller,	 perhaps
overlapping,	copies	of	itself.
As	we	 repeat	 that	 geometric	 rule	more	 and	more	 times,	 and	 the	 number	 of

copies	in	the	figure	increases,	making	it	more	“crowded,”	it	is	often	the	case	that
some	of	those	parts	will	overlap.	For	example,	compare	the	trees	in	figures	7-2
and	7-3.	Both	were	obtained	by	fourteen	repetitions	of	the	bifurcation	procedure
described	above.	For	the	one	in	figure	7-2	we	used	a	reduction	factor	of	 ,	while
for	figure	7-3	we	used	a	reduction	factor	of	 .	We	can	see	that	with	the	reduction
of	 the	 branches	 in	 figure	 7-2,	 the	 resulting	 tree	 has	 plenty	 of	 room	 for	 more
branches	without	having	them	overlap.	This	is	not	true	of	the	tree	in	figure	7-3.
The	 factor	 	does	not	 reduce	 the	branches	enough	 to	provide	 room	for	growth
without	overlap.



A	 natural	 question	 that	 one	 may	 then	 ask	 when	 constructing	 such	 fractals	 is,
What	choices	of	angles	or	 reduction	factors	will	yield	overlapping	figures,	and
which	ones	will	not?
Amazingly,	the	pursuit	of	an	answer	to	that	question	will	lead	us	to	the	now-

familiar	golden	ratio.
Let	us	look	more	closely	to	the	bifurcation	procedure	illustrated	by	figure	7-1.

We	start	out	with	a	segment	k,	whose	length	we	will	stipulate	to	be	one	unit	and
will	 label	 l0.	We	 then	branch	 that	 segment	 into	 two	other	 segments,	which	are
reduced	copies	of	k.	The	factor	of	reduction	is	our	choice,	and	we	will	call	it	f.	In
order	 to	have	branches	spread	evenly	around	the	bifurcation	point,	we	will	use
angles	measuring	120°	between	the	branches	(fig.	7-4).



We	will	 label	 l1	 the	 length	of	 the	new	segments,	 since	 these	were	obtained	by
one	iteration	of	the	copying	procedure.	The	two	new	segments	have	length:

When	 we	 iterate	 the	 bifurcation	 procedure	 again,	 we	 will	 have	 four	 new
segments,	of	length

A	third	iteration	will	produce	segments	of	length	l3	=	f3,	and	so	forth.	In	general,
the	segment	generated	by	the	nth	iteration	will	have	length	fn	(see	fig.	7-5).



As	we	 noted	 earlier,	 whether	 or	 not	 the	 branches	 overlap	will	 depend	 on	 our
choice	 of	 f.	We	 have	 seen	 from	 figures	 7-2	 and	 7-3	 that	 when	 f	 equals	 ,	 or
approximately	 0.57,	 no	 overlapping	 occurs,	 but	 if	 we	 choose	 f	 to	 be	 ,	 or
approximately	 0.71,	 the	 branches	 of	 the	 tree	 will	 overlap.	 This	 leads	 us	 to
conjecture	that	there	should	be	a	real	number	between	 	and	 	that	will	make	the
branches	of	 the	 tree	 lightly	 touch,	with	no	overlaps,	when	used	 as	 a	 reduction
factor.	Let	us	try	to	find	such	a	number.
We	 want	 the	 zigzag	 made	 by	 the	 segments	 of	 lengths	 f3,	 f4,	 f5,	 f6,…to	 fit

exactly	between	the	two	parallel	axes	o	and	p	shown	as	dashed	lines	in	figure	7-
6.
What	is	the	distance	between	those	two	parallel	lines?
We	 can	 see	 from	 figure	 7-7	 that	 it	will	 be	 the	 projection	 of	 the	 segment	 of

length	f	onto	line	r,	that	is,	f	sin	60°.
If	we	also	“flatten”	the	zigzag	horizontally,	we	get	the	equation	we	want	to	be

true	in	order	to	have	branches	touching	but	not	overlapping:

	



f3sin	60°	+	f4sin	60°	+	f5sin	60°	+	f6sin	60°	+…=	fsin	60°.

We	can	simplify	this	equation	by	dividing	both	its	sides	by	sin	60°:

f3	+	f4	+	f5	+	f6	+…=	f.

The	left	side	of	this	equation	can	be	rewritten	as:	f3	(1	+	f	+	f2	+	f3+…).
	

The	summation	 in	parentheses	 is	 the	geometric	series,	which	converges	 to	
for	values	of	f	between	0	and	1,	which	is	the	case	of	our	reduction	factor,	since
by	figures	7-2	and	7-3	we	know	that	it	must	be	between	the	values	 	and	 .
We	arrive	then	at	the	equation	
Can	we	find	values	of	f	that	satisfy	this	equation?	So	far	the	equation	does	not

look	very	familiar,	but	we	can	simplify	it	further.	If	we	divide	both	sides	by	f,	we
get



Finally,	let's	multiply	both	sides	by	1	–	f:

f2	=	1	–	f.

This	 equation	 looks	more	 familiar.	 It	 is	 the	 quadratic	 equation	 f2	 +	 f	 –	 1	 =	 0,
whose	roots	are

that	is,	the	reciprocal	and	the	opposite	of	the	golden	ratio.



And	there	we	find	our	amazing	golden	number	again	as	the	optimal	solution	for
our	aesthetic	demand.	A	fractal	tree	constructed	with	the	reciprocal	of	the	golden
ratio	 as	 the	 reduction	 factor	will	 have	 branches	 covering	up	 as	much	 space	 as
they	 can,	 and	 branches	 getting	 as	 close	 to	 each	 other	 as	 they	 can,	 until	 they
touch,	though	not	covering	other	branches.
Other	beautiful	fractals	can	be	obtained	by	using	the	golden	ratio	in	one	way

or	 another.	 The	 square	 fractal,	 for	 example,	 is	 constructed	 by	 starting	 with	 a
square	and	adding	reduced	copies	of	it	at	each?	corner.2	At	each	subsequent	step,
reduced	 copies	 are	 added	 to	 each	 one	 of	 the	 three	 free	 corners	 of	 the	 new
squares.	 Figure	 7-8	 shows	 such	 a	 fractal	 in	 the	 ninth	 stage	 of	 its	 construction.



The	reduction	factor	used	is	a	 	linear	reduction.	That	is,	the	side	of	the	squares
created	at	a	particular	stage	measure	 	of	the	length	of	the	side	of	squares	at	the
preceding	stage.

If	we	use	the	golden	ratio	as	the	ratio	between	the	sides	of	squares	in	the	square
fractal,	 the	resulting	picture	is	a	perfectly	crafted	tapestry.	The	squares	snuggle
perfectly,	and	as	the	iterations	progress	we	can	see	many	golden	rectangles	being
delineated	in	the	resulting	picture	(fig.	7-9).	As	in	the	case	with	the	tree	fractal,
the	golden	ratio	is	the	ratio	we	find	if	we	want	optimal	fit	in	the	square	fractal.



Another	 way	 in	 which	 we	 can	 combine	 the	 golden	 ratio	 and	 fractals	 is	 by
deliberately	using	in	our	constructions	geometric	figures	that	we	know	entail	the
golden	ratio	in	their	measurements.	Three	such	figures	are	the	regular	pentagon,
the	isosceles	triangle	with	base	angles	measuring	36°,	and	the	isosceles	triangle
with	base	angles	measuring	72°—which	we	call,	respectively,	the	obtuse	and	the
acute	golden	triangles	(see	chap.	4).	We	can	also	use	the	fact	that	we	can	dissect
each	of	 these	figures	into	a	combination	of	other	regular	pentagons	and	golden
triangles,	as	shown	in	figures	7-10	through	7-13.



A	 regular	 pentagon	 can	 be	 dissected	 into	 two	obtuse	 golden	 triangles	 and	 one
acute	golden	triangle	as	shown	in	figure	7-10.

An	obtuse	golden	triangle	(fig.	7-11)	can	be	dissected	into	one	regular	pentagon
and	 two	 acute	 golden	 triangles.	 Notice	 that	 the	 points	D	 and	E	 are	 found	 by
marking	off	a	 length	equal	 to	 that	of	AB	on	segment	BC	 from	points	B	and	C,
respectively.

Obtuse	golden	 triangles	can	also	be	dissected	 into	 three	other	golden	 triangles,
two	obtuse	and	one	acute,	as	shown	in	figure	7-12.



An	acute	golden	triangle	(fig.	7-13)	can	be	dissected	into	one	regular	pentagon,
three	 acute	 golden	 triangles,	 and	 one	 obtuse	 golden	 triangle.	 Notice	 that	 the
points	Q	and	S	are	found	by	bisecting	the	72°	angles	ABC	and	BCA,	respectively.
We	can	choose	one	of	these	figures	to	start	our	construction,	then	decide	on	a

way	 to	partition	 it,	 one	 that	 can	be	 iterated	over	 and	over.	As	 a	 first	 example,
let's	start	with	an	obtuse	golden	triangle	and	the	dissection	shown	in	figure	7-12.
We	can	stipulate	 that	our	rule	will	be	 to	divide	the	obtuse	golden	triangle	 in

that	manner	and	subsequently	to	remove	the	acute	golden	triangle	in	the	middle.
Each	 iteration	 will	 consist	 of	 applying	 the	 same	 rule	 to	 every	 obtuse	 golden
triangle	 at	 any	 stage	 of	 the	 construction.	 Figure	 7-14	 shows	 the	 result	 of	 five
iterations	of	this	rule.

This	construction	fits	nicely	into	a	pentagonal	shape	if	we	add	to	it	rotated	copies
of	itself,	such	as	in	figure	7-15.



In	 figure	 7-16,	 we	 generate	 a	 fractal	 from	 an	 acute	 golden	 triangle.	 Careful
inspection	 will	 show	 the	 connection	 between	 the	 buildup	 from	 figure	 7-16	 to
figure	7-17.



The	 next	 fractal	 we	 will	 consider	 is	 built	 around	 a	 pentagon.	 The	 process	 of
construction	is	detailed	in	figure	7-18.

In	figure	7-19,	we	have	this	process	iterated	three	times.	Notice	that	in	the	fourth
stage	 of	 the	 construction	 (third	 iteration)	 some	 pentagons	 start	 overlapping
others.
In	 figure	 7-20	we	 see	 the	 results	 of	 the	 first	 five	 iterations.	Once	 again	we

rotated	the	figure	around	a	point	to	create	symmetry.



Another	fractal	involving	pentagons—and	consequently	the	golden	ratio—is	the
pentaflake.	 This	 construction	 is	 said	 to	 have	 been	 first	 thought	 of	 by	German
artist	 Albrecht	 Durer	 (1471–1528).	 We	 start	 with	 a	 regular	 pentagon.	 We
construct	its	diagonals	and	find	their	points	of	intersection.	Those	points	will	be
the	vertices	of	a	new	regular	pentagon	(fig.	7-21).	To	construct	 the	pentaflake,
we	 use	 auxiliary	 circles	 to	 mark	 off	 two	 points	 on	 each	 side	 of	 our	 original
pentagon.	 Figure	 7-21	 shows	 this	 procedure	 for	 one	 of	 the	 sides.	 Figure	 7-22
shows	the	complete	construction.	This	construction	will	be	used	as	the	generator
of	the	fractal.	At	each	stage	of	the	fractal's	construction,	we	will	apply	this	rule



to	every	pentagon	at	that	stage.	Figure	7-23	shows	the	first	three	iterations	in	the
construction	of	the	pentaflake.

How	can	we	be	sure	that	 these	constructions	are	fractals?	Besides	the	presence
of	 self-similarity,	 one	 thing	 that	 characterizes	 fractals	 is	 the	 fact	 that	 their
dimension	can	be	an	irrational	number.
This	 last	 sentence	 may	 not	 make	 sense	 unless	 we	 revise	 our	 concept	 of

dimension.	There	are	many	ways	in	which	dimension	of	a	geometric	object	can



be	 defined.	What	most	 people	 have	 heard	 about	 dimension	 is	 that	 a	 point	 has
dimension	zero,	a	line	has	dimension	one,	plane	figures	have	dimension	two,	and
solids	 are	 three-dimensional.	With	 only	 that	 in	mind,	 it	may	 be	 impossible	 to
conceive	of	an	object	having	dimension	that	is	an	irrational	number.	Therefore,
to	understand	this	affirmation,	we	will	briefly	extend	our	concept	of	dimension.
The	concept	of	dimension	we	will	use	is	also	called	similarity	dimension.	It	is

calculated	by	observing	what	happens	 to	 a	 figure	once	we	dilate	 it	 by	a	 linear
factor	 f.	 We	 will	 try	 to	 understand	 the	 idea	 by	 examining	 objects	 whose
dimensions	we	already	know:	a	segment,	a	two-dimensional	figure,	and	a	three-
dimensional	 figure.	Then,	 once	we	 figure	 out	 the	 process	 that	 originates	 those
numbers,	we	will	use	it	to	calculate	dimensions	of	fractal	objects.
Let's	start	with	a	line	segment	of	length	l.	We	will	then	make	a	dilated	copy	of

it.	We	can	choose	the	dilation	factor	f	to	be	any	number,	for	example,	2.	In	this
case,	the	copy	will	have	length	2l	(fig.	7-24).
The	key	thing	now	to	calculate	the	dimension	is	to	determine	how	many	self-

similar	 copies	 of	 the	 original	 figure	 can	 be	 found	 in	 the	 dilated	 figure.
Obviously,	in	this	case,	we	have	two	copies	of	the	original	segment	in	the	dilated
segment.?

We	will	now	see	what	happens	 if	we	dilate	a	square	by	the	same	factor	 f.	One
important	thing	to	keep	in	mind	is	that	f	is	a	factor	of	linear	dilation.	That	is,	if
we	choose	it	to	be	2,	we	are	going	to	double	the	lengths	for	the	new	figure,	not
the	areas.	 In	 this	case,	 that	means	we	will	double	 the	 length	of	 the	 side	of	 the
square	(fig.	7-25).



We	can	see	that	a	linear	dilation	of	2	will	yield	four	copies	of	the	original	figure,
in	this	case.
Finally,	let's	examine	what	happens	once	we	dilate	a	cube,	which	we	assume

to	have	three	dimensions,	by	a	linear	factor	f.
Figure	7-26	shows	that	when	we	double	the	side	of	a	cube,	the	new	cube	has

eight	copies	of	the	original	cube	in	itself.

The	results	we	obtained	are	summarized	in	a	table	(fig.	7-27).



From	this	table	you	can	notice	the	number	of	copies	obtained	can	be	rewritten	as
a	power	of	f,	and	the	exponents	are	precisely	the	dimension	we	commonly	have
heard	of:	1	in	the	case	of	the	segment,	2	for	the	square,	and	3	for	the	cube	(fig.	7-
28).

So	 if	 we	 define	 dimension	 to	 be	 the	 exponent	 obtained	 when	 we	 write	 the
number	 of	 self-similar	 copies	 as	 a	 power	 of	 the	 linear	 dilation	 factor,	 we	 get
results	that	match	our	previous,	informal,	notion	of	dimension.	This	is	just	a	way
of	 simplifying	 a	more	 formal	 definition	 of	 dimension,	 known	 as	 box-counting
dimension,	which	we	will	not	cover	here.	But	notice	that	this	simplification	can
only	be	used	in	self-similar	figures.
Let	 us	 write	 these	 observations	 algebraically.	 We	 will	 use	 the	 following

notation:
	
Dimension	=	d
Number	of	self-similar	copies	=	N
Linear	dilation	factor	=	f
Using	the	variables	above,	we	can	write	the	following	equation:	N	=	fd.

	
Let	us	use	this	definition	of	dimension	to	calculate	the	dimension	of	the	fractal	in
figure	7-14.



Figure	7-29	shows	that	a	linear	dilation	of	 	(gives	us	two	copies	of	the	original
figure.	This	can	be	seen	if	we	notice	that	triangle	ABC	in	the	figure	is	a	golden
triangle,	so	its	sides	AB	and	AC	are	to	each	other	in	the	golden	ratio.
Using	our	formula	for	dimension	we	have	that	this	fractal	has	dimension:

Since	 our	 unknown	 d	 is	 the	 exponent,	 to	 find	 its	 value	 we	 need	 to	 apply	 the
logarithmic	function	to	both	sides	of	the	equation:

Using	a	known	property	of	logarithms,	the	equation	becomes

The	value	of	d	is	obtained	if	we	divide	both	sides	of	the	equation	by	log	 :

So	 d	 is	 irrational.	 Having	 an	 irrational	 dimension	 is	 a	 common	 trait	 among
fractals.
The	 number	 also	 lies	 between	 1	 and	 2	 (it	 is	 approximately	 equal	 to	 1.44).

What	 does	 it	 mean	 to	 have	 dimension	 greater	 than	 1	 but	 less	 than	 2?	 A
dimension	equal	to	1	is	characteristic	of	segments,	objects	that	have	only	length.
Two-dimensional	objects,	on	the	other	hand,	have	an	area.	A	dimension	of	1.44
seems	to	suggest	that	our	fractal	has	more	than	just	length,	but	not	quite	an	area.
One	might	at	this	point	argue	that	the	objects	in	figure	7-29	have	an	area.	But

we	have	 to	 remember	 that	 those	 illustrations	 represent	 just	 initial	 stages	 in	 the
construction	of	 the	 fractal.	The	actual	 fractal	 is	 the	set	of	points	 that	would	be
obtained	after	an	infinite	number	of	iterations	of	the	generative	procedure.
But	since	we	can	calculate	the	area	at	a	specific	stage,	let	us	calculate	a	few	of

those	and	 infer	what	 the	area	of	 the	 fractal	would	be	by	examining	 the	change
pattern	we	will	find.



Let	 us	 also	 calculate	 the	 perimeter	 of	 the	 fractal,	 that	 is,	 the	 length	 of	 its
boundary.
Figure	7-30	shows	the	calculations	for	the	first	ten	stages	of	the	fractal.

The	 table	was	constructed	cognizant	of	 the	 fact	 that	 if	we	start	with	an	obtuse
golden	triangle	in	which	the	shorter	side	measures	one	unit	length,	the	length	of
the	 longer	side	will	be	equal	 to	 .	At	each	subsequent	stage,	 the	 lengths	of	 the
sides	will	be	reduced	by	a	factor	of	 .	The	area	of	each	triangle	was	calculated
with	the	help	of	the	Pythagorean	theorem	and	the	formula	for	area	of	a	triangle.
The	 total	 perimeter	 and	 total	 area	 at	 a	 particular	 stage	 are	 the	 sums	 of	 the
perimeters	and	areas	of	all	triangles	at	that	stage,	respectively.
The	graphs	in	figures	7-31	and	7-32	help	us	see	that	while	the	perimeter	of	the

fractal	increases	at	each	stage,	the	area	decreases.	In	the	long	run,	the	fractal	will
have	an	infinite	perimeter	but	an	area	equal	to	zero.	No	wonder	it	has	dimension
greater	 than	1,	but	 less	 than	2.	As	we	suspected,	 the	dimension	of	1.44	means
that	 our	 fractal	 has	more	 than	 just	 length	 (dimension	 1),	 but	 not	 quite	 an	 area
(dimension	2).



What	would	the	dimension	of	the	pentaflake	be?	We	see	that	at	each	stage	of	its
construction,	 the	pentaflake	gets	more	and	more	“holes.”	This	suggests	 that	 its
dimension	is	more	than	1	and	less	than	2.	Let	us	see	if	calculations	confirm	this
conjecture.
Figure	7-33	shows	 that	when	we	arrange	six	copies	of	a	pentagon	 to	 form	a

pentaflakelike	 figure,	 the	 corresponding	 linear	 factor	 of	 dilation	 is	 1	 +	 .
Calculating	the	dimension	the	same	way	we	did	for	the	previous	fractal,	we	will

find	 that	 the	 dimension	 of	 the	 pentaflake	 is	 ,	 which	 is	 an	 irrational
number	approximately	equal	to	1.86.



Does	 the	 fact	 that	 the	 golden	 ratio	 was	 employed	 in	 the	 construction	 of	 the
fractals	 in	 this	chapter	make	 them	more	visually	appealing	 than	other	 fractals?
That	may	 not	 be	 the	 case.	 But	 the	 study	 of	 the	mathematical	 relationships	 in
these	fractals	and	the	fact	that	the	golden	ratio	plays	such	a	strong	role	in	them
can	certainly	generate	awe.



Concluding	Thoughts

	

As	we	have	reached	the	end	of	our	journey,	you	must	be	thoroughly	convinced
that	 the	golden	 section	 is	 a	 truly	extraordinary	phenomenon	 in	mathematics.	 It
appears	both	by	design	and	by	chance.	Although	we	have	to	take	the	clues	from
history,	and	as	best	our	modern	minds	can	reconstruct	the	pieces,	we	can	see	that
this	relationship	has	permeated	all	aspects	of	society:	structurally,	aesthetically,
biologically,	 and	 mathematically,	 which	 has	 given	 us	 an	 enormous	 range	 of
areas	to	explore.	The	ratio's	history	is	fascinating,	and	we	traced	it	from	ancient
times	to	its	more	recent	manifestations.	Were	the	ancients	aware	of	this	ratio	in
all	cases,	or	are	we	speculating	that	they	did	to	some	degree?	Whatever	the	case
may	be,	it	is	truly	delightful	to	view	its	past	permutations	in	our	search	for	this
ratio.	 You	 might	 well	 find	 other	 situations	 where	 this	 ratio	 emerges.	 The
possibilities	are	practically	boundless.
By	now	you	know	how	to	construct	 the	ratio	by	partitioning	a	 line	segment,

constructing	a	golden	rectangle,	a	golden	triangle,	and	a	regular	pentagon—all	of
which	exhibit	the	golden	section	clearly.	However,	we	have	also	examined	other
geometric	 configurations	 that	 in	 some	 fashion	 exhibited	 the	 golden	 section—
many	 of	 which	 were	 quite	 unexpected	 appearances.	 Yet	 with	 each	 of	 these
unexpected	sightings	of	the	golden	section,	there	was	usually	an	introduction	to
what	 for	 many	 were	 some	 new	 geometric	 relationships	 beyond	 the	 golden
section.	It	is	our	hope	that	this	type	of	exploration	enriches	one's	encounter	with
geometry—something	sorely	lacking	from	traditional	high	school	geometry.
The	numerical	value	of	 the	golden	 ratio	 is	 fascinating	 largely	because	of	 its

ubiquity.	 Perhaps	 its	 most	 well-known	 connection	 to	 another	 structure	 in
mathematics	is	its	connection	to	the	Fibonacci	numbers—that	is,	the	ratio	of	two
consecutive	 Fibonacci	 numbers	 approaches	 either	 the	 golden	 ratio	 or	 its
reciprocal,	 depending	 on	 the	 order	 of	 the	 ratio.	 This	 brings	 us	 to	 the	 most
unusual	relationship	of	the	numerical	value	of	the	golden	ratio,	namely	it	is	the
only	number	that	differs	from	its	reciprocal	by	1,	that	is,	 .	This	led	us	to	a
value	of	 	 that	 is	 irrational	 and	 that	 in	 turn	has	opened	up	yet	 another	 area	of
further	investigation.
Aside	from	its	appearance	in	architecture	and	art,	 the	golden	section	may	be

found	 throughout	 the	plant	kingdom.	You	will	quite	 likely	now	be	 looking	 for
other	golden	 ratio	 specimens	 in	 the	biological	world.	We	 just	provided	you	an



open	door	from	which	to	peek	at	the	garden	of	possibilities	in	this	arena.
The	closing	chapter,	showing	the	golden	section	in	the	field	of	fractals,	can	be

seen	as	both	mathematical	and	artistic.	This	rounds	out	our	appreciation	for	this
most	 famous	 ratio	 in	 mathematics.	 Since	 it	 relates	 in	 some	 form	 to	 almost
everything	in	the	field	of	mathematics,	it	is	truly	a	ratio	that	has	earned	the	title
of	golden.	So	now	go	for	it,	and	expand	on	your	introduction	to	the	golden	ratio!



Appendix

Proofs	and	Justifications	of
Selected	Relationships

	

FOR	CHAPTER	1:



Derivation	of	the	Quadratic	Formula

The	quadratic	equation,	ax2	+	bx	+	c	=	0	(where	a	>	0),	can	be	solved	for	x	in	the
following	way:	ax2	+	bx	+	c	=	0.

			[Add	 	to	both	sides	of	the	equation.]

			[Take	the	square	root	of	both	sides.]

			[Note	the	absolute	value.]

	Therefore,

FOR	CHAPTER	3:

Proof	of	 ,	with	n	≥	1	and	F0	=	0.

We	begin	by	showing	that	the	statement	to	be	proved	by	mathematical	induction
is	true	for	n	=	1.
Yes,	it	holds	true:	
It	is	also	true	for	the	cases	of	n	=	2,	3,	4,	5,	as	shown	below:

What	 now	 remains	 is	 that	we	 accept	 its	 truth	 for	 k:	 	 and	must
show	it	is	then	also	true	for	k	+	1,	namely	
By	multiplying	the	first	equation	by	 ,	we	get:	
Since	 	we	have



	 which	 we	 were
required	to	show.



On	Continued	Fractions

A	 continued	 fraction	 is	 a	 fraction	 in	which	 the	 denominator	 contains	 a	mixed
number	 (a	 whole	 number	 and	 a	 proper	 fraction).	 We	 can	 take	 an	 improper
fraction	such	as	 	and	express	it	as	a	mixed	number:	 .	Without	changing

the	value,	we	could	then	write	this	as	
which	in	turn	could	be	written	(again	without	any	value	change)	as

This	is	a	continued	fraction.	We	could	have	continued	this	process,	but	when	we
reach	 a	 unit	 fraction	 (as	 in	 this	 case,	 the	 unit	 fraction	 is	 ),	we	 are	 essentially
finished.
So	 that	 you	 can	 get	 a	 better	 grasp	 of	 this	 technique,	we	will	 create	 another

continued	fraction.	We	will	convert	 	to	a	continued	fraction	form.	Notice	that
at	 each	 stage,	 when	 a	 proper	 fraction	 is	 reached,	 take	 the	 reciprocal	 of	 the

reciprocal	(e.g.,	change	
as	we	will	do	in	the	example	that	follows),	which	does	not	change	its	value:

If	 we	 break	 up	 a	 continued	 fraction	 into	 its	 component	 parts	 (called
convergents),1	 we	 get	 closer	 and	 closer	 to	 the	 actual	 value	 of	 the	 original
fraction.

First	convergent	of	 : 1.

Second	convergent	of	 :



Third	convergent	of	 :

Fourth	convergent	of	 :

The	 above	 examples	 are	 all	 finite	 continued	 fractions,	which	 are	 equivalent	 to
rational	numbers	(those	that	can	be	expressed	as	simple	fractions).	It	would	then
follow	 that	 an	 irrational	 number	would	 result	 in	 an	 infinite	 continued	 fraction.
That	 is	 exactly	 the	 case.	A	 simple	 example	of	 an	 infinite	 continued	 fraction	 is
that	 of	 .	 Although	 we	 show	 it	 here,	 we	 will	 actually	 generate	 it	 just	 a	 bit
further	on.

	
We	 have	 a	 short	 way	 to	 write	 a	 long	 (in	 this	 case	 infinitely	 long!)	 continued
fraction:	[1;	2,	2,	2,	2,	2,	2,	2,…],	or	when	there	are	these	endless	repetitions,	we
can	even	write	it	in	a	shorter	form	as	[1;	 ],	where	the	bar	over	the	2	indicates
that	the	2	repeats	endlessly.
In	general,	we	can	represent	a	finite	continued	fraction	as

	
where	ai	 are	 real	numbers	 and	ai	≠	0	 for	 i	>	0.	We	can	write	 this	 in	 a	 shorter



fashion	as	[a0;	a1,	a2,	a3,…,	an-1,	an],	but	as	an	infinite	continued	fraction	as	[a0;
a1,	a2,	a3,…,	an,…].
As	we	said	before,	we	will	generate	a	continued	fraction	equal	to	 .
Begin	with	the	identity	
Factor	the	left	side	and	split	the	2	on	the	right	side:

Divide	both	sides	by	1	+	 	to	get	

Replace	 	with	 	and	simplify	the	terms:	

Continue	this	process.	The	pattern	now	becomes	clear.

Eventually	we	conclude	with	the	following:

Thus	we	have	a	periodic	continued	fraction	for	
(that	is,	 	=[1;	2,	2,	2,…]	=	[1;	 ]).
There	are	continued	fractions	equal	to	some	famous	numbers	such	as	Euler's	

( 	 =	 2.7182818284590452353…)2	 and	 the	 famous	 π	 (π	 =
3.1415926535897932384…):



Here	are	two	ways	that	π	can	be	approximated	as	a	continued	fraction.3

Sometimes	we	have	continued	fractions	representing	these	famous	numbers	that
do	not	seem	to	have	a	distinctive	pattern:

We	have	now	set	the	stage	for	the	golden	ratio.	Can	we	express	this	Fibonacci-



related	ratio	( 	=	1.6180339887498948482…)	as	a	continued	fraction?



Proof	of	the	Binet	Formula

Following	you	will	find	a	simple	way	to	express	the	Binet	formula:

where	

Recall	the	relationships	that	exist	between	 	and	 	(since	 ):	
The	proof	will	be	done	using	mathematical	induction.



We	begin	by	noting	that

that	is,	for	n	=	0	and	n	=	1,	the	Binet	formula	is	correct.
Therefore,	we	assume	that	it	is	true	for	n	–	2	and	n	–	1.
Because	 of	 the	 recursive	 formula,	we	 have	Fn	 =	Fn–1	 +	Fn–2,	 and	we	must

therefore	show	that	
	
Thus	it	suffices	that	

Thus,	 ,	as	required.	The	corresponding	result	for	 	is	proved	in	a
similar	way.	The	two	together	conclude	the	induction.

FOR	CHAPTER	4:



Development	of	the	ratio:

Applying	the	Pythagorean	theorem	to	ΔABC:

d	=	d1	+	d2	=	AC

ΔABP	 ~	 ΔABC;	 therefore,	 ,	 therefore,	

ΔBCP	~	ΔABC;	therefore,	



Analogously,	we	have	segments	 1	and	 2	along	the	diagonal	BF,	which	enables

us	to	have	ΔBCP	~	ΔABC,	with	

Furthermore,	ΔCFP	~	ΔABC,	with	 ,	with	

which,	simplified,	gives	us	

Whereupon	we	can	establish	the	lengths	x	and	y	on	sides	AB	and	BC	as	follows:

For	ΔBGP	~	ΔABC,	with	 	we	get



	
Applying	the	Pythagorean	theorem	to	ΔBHP,	we	get

	
Thus	we	now	have	AG	=	AB	–	BG	=	a	+	b	–	x	=

	
Thus	the	following	segment	lengths	give	us	the	golden	ratio:

Now	finally	we	have	



To	Prove	That	 the	Maximum	Area	of	 the	Shaded	Region	Formed	by	Two
Congruent	Perpendicular	Rectangles	 Is	Obtained	When	They	Are	Golden
Rectangles4

We	have	rectangles	that	give	us	AB	=	CD	=	FG	=	EH	=	a,	AD	=	BC	=	EF	=	GH
=	b,	AM	=	BM	=	EM	=	FM	=	r,	and	as	marked	in	figure	A-2:	α	=	 AMB	and	β	=	
EMF.	By	 symmetry,	β	 =	 EMF	 =	 AMD.	 Therefore,	α	 +	β	 =	 AMB	 +	

AMD	=	180°,	since	BD	is	the	diagonal	of	the	rectangle	ABCD.
The	 shaded	 region	 in	 figure	 4-13	 is	 actually	 composed	 of	 the	 original

rectangle	ABCD	and	two	rectangles	with	side	lengths	EF	and	JK
The	shaded	region	(in	fig.	4-13)	is	actually	composed	=	 	·	b	=	ab	+

(a	–	b)b	=	2ab	–	b2.
Applying	the	Pythagorean	theorem	to	ΔAJM,	we	get	AM2	=	AJ2	+	JM2,	which

then	gives	us	

	
	



With	α	=	180°	–	β,	or	in	another	form	 ,	and	sin	 	 ,

we	can	get	 .
	
	
The	area	of	the	shaded	region	

The	 factor	 4r2	 has	 no	 effect	 on	 the	 maximum	 area	 of	 the	 shaded	 region.
Therefore,	 we	 shall	 focus	 our	 attention	 on	 the	 remaining	 factor:	

	[where	the	area	of	the	shaded	region	=	4r2·f(β)],	and	it	 is
this	we	must	maximize.

Differentiate	f	and	then	set	it	equal	to	0	to	get

It	is	necessary	for	us	to	maximize,	and	for	that	we	need	to	show	for	0	<	β	<	180°
the	value	β	=	arctan	2	≈	1.107	(radians)	≈	63.4°.



We	have

That	is,

The	 second	 derivative,	 ,	 is	 at	 this	 point	 less	 than	 zero,	

,	So	that	the	maximum	is	at	β	=	arctan	2	=	2	arctan	

	≈	63.4°.

Because	 ,	we	have	a	golden	rectangle.
The	area	of	the	shaded	region	
The	shaded	region	covers	an	area	of	approximately	78.7	percent	of	the	area	of

the	circle.

The	 ratio	 of	 the	 areas	 is	 	 to	 .	 That	 is,	

To	Show	That	the	Golden	Ratio	Is	Present
in	Parts	of	the	Pentagon	and	the	Pentagram

We	can	use	a	number	of	approaches.	Here	we	offer	two	such.

Option	1:



For	 ΔADZ	 ~	 ΔBCZ,	 we	 get	 ,	 or,	 using	 the	 length

designations	from	figure	A-3,	we	can	write	this5	as	
which	gives	us	d2	–	ad	–	a2	=	0,	or

If	 we	 replace	 	 by	 x,	 we	 arrive	 at	 the	 (by	 now)	 well-known	 golden	 ratio
equation:	x2	–	x	–	1	=	0,	where	we	know	that	x	=	 	=	 ,	or	d	=	a .

Option	2:



This	 time	 we	 will	 use	 the	 following	 similar	 triangles:	 ΔABS	 ~	 ΔCES	 to	 get	
.	Using	the	length	designations	for	figure	A-4,	we	can	write	this

as	
Dividing	by	a,	we	get

again	the	golden	ratio	equation,	and	in	similar	fashion,	we	get	d	=	a .
We	can	also	see	from	figure	A-4	that	a	=	e	+	f,	d	=	a	+	e	=	2e	+	f.

Therefore,	 ,	 which	 gives	 us:	 a	 =	 	 ·	 (d	 –	 a),	 or	 another	 way:	

Since	point	T	partitions	AC	into	the	golden	section,

or,	in	another	way,	we	can	say	that	
It	then	follows	that	e	and	f	are	also	in	the	golden	ratio.

that	is,	
Furthermore,	we	can	also	establish	the	sides	of	the	two	consecutive	pentagons

(ABCDE	and	PQRST)	(see	fig.	4-64):	

which	gives	us	
We	represent	the	height,	b	=	AF,	of	ΔACD	as	follows:



Again,	we	see	the	golden	ratio	everywhere	in	this	configuration!

Justification	for	Note	on	Page	150

To	show	that	

We	begin	by	squaring	both	sides	of	the	equation	and	seek	to	show	the	equality:

Pentagon's	Rotation—Justification	of	Conclusions

Using	figure	A-5,	we	shall	take	a	more	detailed	look	at	what	is	really	happening
here	that	allows	us	to	draw	the	conclusions	we	drew	in	chapter	4.6	By	the	first



rotation	of	72°	at	point	A5,	we	find	that	A1	goes	to	B2,	A2	goes	to	B3,	A3	goes	to
B4,	A4	goes	to	B5	and	A5	stays	at	B1.	The	angle	of	rotation,	 A4A5B5	=	72°,	since
each	angle	of	the	pentagon	is	108°.	The	isosceles	ΔA1A5B2,	where	A1A5	=	A5B2	=
a,	has	angles	α	=	 A1A5B2	=	72°	and	 A5A1B2	=	 A1B2A5	=	54°.	We	can	then
generalize	that	continuing	this	process	will	give	us	 B2A1E	=	 DEA1,	or	that	in
figure	4-71	we	have	 BAE	=	 AED	=	54°.	This,	by	 the	way,	also	establishes
that	 the	 center	 point	 of	 the	 pentagon	M	must	 lie	 on	A1B2	 (fig.	A-5),	 or	 as	we
stated	above	for	figure	4-71,	M	must	lie	on	AB,	since	it	bisects	A2A1A5.
If	 we	 apply	 the	 law	 of	 cosines7	 to	 ΔA1A5B2,	 we	 get	

Therefore,	 	(see	fig.	4-71).
The	diagonal	d	=	C2	C4	of	pentagon	C1	C2	C3	C4	C5	is	bisected	by	the	point	F.

We	have	 	therefore,	

When	 we	 apply	 the	 Pythagorean	 theorem	 to	 right	 ΔC2C3F,	 we	 get	

We	can	also	express	C3F	=	
Now	 we	 have	 shown	 that	 	 and	 previously	 we	 showed	 that	

,	so	we	can	now	conclude	that	
Since	 A5B5B3	=	 A5B5C2	=	72°,	we	find	C2	is	on	the	diagonal	B3B5.
Recall	that	C2	partitions	the	diagonal	B2B4	into	the	golden	ratio.



We	 know	 that	 triangle	B2B3C2	 is	 a	 golden	 triangle,	 so	 it	 then	 follows	 that	



This	then	leads	us	to

	
We	 now	 apply	 the	 Pythagorean	 theorem	 to	 right	 ΔB2	 C3	 F	 to	 get	



It	follows	that

Because	of	symmetry,	we	have	 	which	was	what	we	set	out	to	show.
As	 we	 seek	 to	 compare	 areas,	 let's	 consider	 the	 strange-looking	 pentagon

ABCDE	(or	in	fig.	A-5,	A1B2C3DE).	The	area	of	this	pentagon	is	the	sum	of	the
trapezoid	A1B2DE	and	the	isosceles	ΔB2C3D.

The	area	of	the	original	pentagon	is

	(see	p.	154).

For	the	height	h	=	C3G	of	ΔB5C3G,	we	have

	
Then	the	height	of	the	trapezoid	is



We	have

The	area	of	the	trapezoid	A1B2DE	is

The	area	of	ΔB2C3D	is

	
The	 area	 of	 the	 strange-looking	 pentagon	 A1	 B2	 C3	 DE	 is	

which	is	three	times	the	original	pentagon's	area:

which	we	wished	to	demonstrate.

Proof	for	the	Height	of	the	Rooflike	Cap	on	a	Cube



Consider	 the	 right	 ΔAPR	 with	 a	 leg	 length	 	 and	 PR	 =	 h’	 as	 well	 as
hypotenuse	AR	=	a.	We	also	have	the	altitude	from	R	to	the	surface	of	the	cube
forming	ΔPQR	with	sides	PQ	=	x	and	QR	=	h	as	well	as	hypotenuse	PR	=	h'.	The
edge	 of	 the	 cube	 (d)	 is	 the	 diagonal	 of	 the	 pentagon	whose	 side	 has	 length	a.
Therefore,	 d	 =	 a.	 With	 d	 –	 2x	 =	 a,	 we	 get	

By	 applying	 the	 Pythagorean	 theorem	 twice,	 we	 have	 PR2	 =	 h'2	 =	

	which	then	gives	the	height	
Then	a	second	time:

whereupon	
If	the	inscribed	cube	has	edge	length	equal	to	1,	or	d	=	1,	then	we	immediately

get	 	and	then	

More	Trigonometric	Relationships
in	Terms	of	the	Golden	Section



	

	

	



	

	



To	Show	That	the	Following	Are	True:



and

Proof:8

We	begin	by	using	the	known	relationship:



to	get

If	 we	 let	 δ	 =	 2α	 and	 ε	 =	 α	 in	 the	 above	 identity,	 we	 get	

If	 we	 now	 let	 α	 =	 arctan	 ,	 we	 get	

Since	tan	(180°	–	x)	=	tan	(π	–	x)	=	–	tan	x	we	have

Therefore,	 we	 have	 	 which	 when	 we	multiply	 by	 2

gives	us	2π	–	2	arctan	 	=	π	+	2	arctan	
By	adding	(–	π	+	2arctan	 )	to	both	sides	of	the	equation,	we	get	π	=	2	(arctan	

	+	arctan	 )	=	2	·	(3	arctan 	–	arctan	 )	=	6	arctan	 	–	2	arctan	 .

	

FOR	CHAPTER	5:

Curiosity	1

In	 an	 equilateral	 triangle,	ΔABC,	 each	 side	 of	 length	 s	 is	 partitioned	 (with	 the
same	orientation)	into	the	segments	a	and	b,	which	are	in	the	golden	ratio	(fig.



A-7).	The	result	 is	 that	an	 inscribed	equilateral	 triangle,	ΔDEF,	 is	created	with
side	length	c.

Here	are	some	of	the	appearances	of	 	in	this	figure:	

3.	The	ratio	of	the	areas	of	the	two	equilateral	triangles	is

	

4.	The	area	of	each	of	the	three	congruent	triangles	ΔADF,	ΔBDE,	and	ΔCEF	is	

5.	The	 ratio	of	 the	 areas	of	 the	original	 equilateral	 triangle	 to	one	of	 the	 three

congruent	triangles	is	



6.	 The	 ratio	 of	 the	 area	 of	 the	 smaller	 equilateral	 triangle	 to	 one	 of	 the	 three

congruent	triangles	is	
	
The	Justifications:

1.	We	begin	by	getting	the	area	of	ΔABC	and	ΔDEF:

The	triangles	ADF,	BDE,	and	CEF	are	congruent	(by	Side-Angle-Side,	SAS).
Applying	the	law	of	cosines	to	triangle	ADF:

DF2	=	C2	=	AD2	+	AF2	–	2AD	·	AF	·	cos	60°

		
	
We	partitioned	the	sides	of	the	original	equilateral	triangle	in	the	golden	ratio.

Therefore,	



It	then	follows	that



which	gives	us



A	check	of	 the	 above	 can	be	made	by	 taking	 the	 sum	of	 the	 areas	of	 the	 four
triangles	 and	 showing	 that	 it	 is	 the	 area	 of	 the	 original	 equilateral	 triangle:	

Justification	for	Curiosity	19

We	are	given	 that	 the	areas	of	 the	 three	 shaded	 triangles	 (fig.	A-8)	 are	 equal:	

Therefore,	 	·	b	(c	+	d)	=	 	·	ac	=	 	·	(a	+	b)	d,	and	b(c	+	d)	=	ac	=	(a	+	b)	d,
which	leads	to	bc	+	bd	=	ac	=	ad	+	bd.

We	then	get
(a	+	b)	:	a	=	c	:	d
(c	+	d)	:	c	=	a	:	b.
	
It	follows	that	(a	+	b)	:	(c	+	d)	=	b	:	d
as	well	as	bc	+	bd	=	ac	=	ad	+	bd;	thus,	bc	=	ac.	That	is,	a	:	b	=	c	:	d.

	
For	our	purposes:



Therefore,	
Multiplying	both	sides	by	cd	gives	us	bc2	=	bd	(c	+	d)	=	bcd	+	bd2,	or	bc2	=

bcd	+	bd2,	which,	when	divided	by	b,	yields	c2	=	cd	+	d2,	or	c2	–	d2	–	cd	=	0.
Then	 dividing	 by	d2,	 we	 get	 	 There	 appears	 our	 equation	 for	 the
golden	 section.	 With	 ,	 we	 get	 x2	 –	 x	 –	 1	 =	 0,	 giving	 us	 roots:	

	
As	we	focus	on	the	positive	root,	we	have

Therefore,	c	:	d	=	a	:	b	=	(c	+	d)	:	c	=	(a	+	b)	:	a	=	 	=	 	:	1,	which	shows	that
P	and	Q	partition	AB	and	BC,	respectively,	into	the	golden	ratio.

Construction	for	Curiosity	23

The	construction	steps	are	as	follows:
(1)	Construct	trapezoid	ABCD	with	AD	||	BC	and	BC	=	3	AD.
(2)	Construct	right	ΔBCE	with	CE	=	AD	and	 BCE	=	90°.
(3)	Construct	the	perpendicular	bisector	of	BE	at	its	midpoint	F	and	then	mark	G



so	that	FG	=	 .
(4)	Construct	a	circle	with	center	B	and	radius	BG	to	intersect	BC	at	point	H.
(5)	Finally,	 construct	parallelogram	BHJK	with	point	J	 on	CD	 and	point	K	 on
AB.

We	then	have	K	partitioning	the	line	segment	AB	in	the	golden	ratio.
This	 can	 be	 easily	 justified,	 since	 with	 AD	 =	 b	 and	 BC	 =	 3b,	 we	 get	



Since

we	have	JK	=	BH	=	BG	as	the	root	mean	square	between	a	and	b	when	a	=	3b.
Thus,	AK	:	BK	=	 	:	1.

Proof	for	Curiosity	24

We	are	given	that	AB	=	a,	BC	=	AD	=	b,	and	CD	=	c.	From	the	relationship	of
the	tangents	to	the	same	(inscribed)	circle,	we	have	a	+	c	=	b	+	b	=	2b,	or	c	=	2b
–	a.
We	let	α	=	 CAD,	β	=	 BAC,	 	=	 ABC,	δ	=	 ADC,	ε	=	 BMoC,	and	 	=	

CMoE;	E	is	the	midpoint	of	CD	=	c.	From	point	C,	we	construct	a	perpendicular
CF	to	AB.	We	have	CF	=	EMo	=	2ri.	Also	ri	=	MiMo,	the	radius	of	the	inscribed
circle.	Furthermore,	 BAD	+	 ADC	=	 ABC	+	 BCD	=	180°.
Since	 ACB	 is	 inscribed	in	a	semicircle,	 it	 is	a	right	angle	and	β	+	 	=	90°.

We	have	isosceles	ΔAMoC,	with	AMo	=	CMo	=	ro,	and	 MoAC	=	 ACMo	=	β.
The	angles	 CMoE	and	 FCMo,	as	alternate	interior	angles	of	the	parallel	lines,
are	equal.	Therefore,	 CMoE	=	 FCMo	=	 .
For	right	ΔACF,	therefore,	 FAC	+	 ACF	=	 FAC	+	 ACMo	+	 MoCF	=

2β	+	 	=	90°,	or	 	=	90°	–	2β.



Let's	consider	c	=	2b	–	a,	and	then	substitute.	c	=	2b	–	a	=	2	·	2ro	·	sin	β	–	2ro
=	2ro	·	(2sin	β	–	1).	On	one	side	we	have	c	=	2ro	·	sin	 .	On	the	other	hand,	we
also	have	2ro	·	(2sin	β	–	1)	=	2ro	·	sin	 	=	2ro	·	sin	(90°	–	2β)																										|2ro.

	
2	sin	β	–	1	=	sin(90°	–	2β) |	subtraction9

																	=	sin	90°	·	cos	2β	–	cos	90°	·sin2β 	
																	=	1	·	cos	2β	–	0	·	sin2β 	
																	=	cos	2β |	double	angle	formula	for	cosine
																	=	cos2β	–	sin2β |	the	Pythagorean	theorem
																	=	1	–	sin2β	–	sin2β 	
																	=	1	–	2	sin2β |	add	2	sin2β	–	1
2	sin2β	+	2	sinβ	–	2	=	0 |	divide	by	2
sin2β	+	sinβ	–	1	=	0. 	
	

Substituting	give	us	x	=	sinβ	and	then	appears	the	equation	that	we	are	by	now
quite	familiar	with,	the	equation	for	the	golden	section:	x2	+	x	–	1	=	0,	where	the
only	usable	root	is	x	=	sinβ	=	 .
For	ΔACMo:	ε	=	 BMoC	and	 AMoC	=	 AMoE	+	 CMoE	=	90°	+	 .

Thus,	ε	=	90°	+	(90°	–	2β)	=	2β	or	β	=	 .
To	justify	this,	consider:	sin	 	=	sin	β	=	 	or	β	=	 	≈	38.17°.

	

	
thus,	ε	≈	76.35°.
	=	90°	–	2β	≈	13.65°.

From	 BAD	=	 ABC	=	 ,	we	get	β	+	 	=	90°,	or	 	=	90°	–	β	≈	51.83°.
Since	α	+	β	=	 ,	we	get	 CAD	=	α	=	 	β	≈	13.65°.



We	have	two	angles,	 BCD	=	 ADC	=	δ,	and	we	get	 	+	δ	=	180°,	or	δ	=
180°	–	 	≈	128.17°.

For	the	trapezoid's	sides,	b	=	a	·	sin	β	and	c	=	M0F	=	2r0·	sin	 	=	a	·	sin	 ,	thus,	b

=	a	
For	the	radius	of	the	circumscribed	circle:	

For	the	radius	of	the	inscribed	circle:
	

Explanation	for	Curiosity	25

We	 provide	 you	 with	 an	 overview	 of	 the	 solution	 and	 refer	 you	 to	 a	 more
detailed	 version	 at	 the	 following	 website:
http://www.mathekalender.de/info/loesungsheft_2009.pdf	 (see	 pp.	 94–99:
December	 15,	 2009,	 by	 Ingmar	 Lehmann	 and	 Elke	 Warmuth,	 Humboldt-
Universität-Berlin—n.b.	points	H	and	F	are	switched	in	this	reference).

http://www.mathekalender.de/info/loesungsheft_2009.pdf


We	 begin	 by	 using	 an	 auxiliary	 plane	EFGH	 parallel	 to	 the	 base	ABCD.	 The
height	of	the	pyramid,	KS,	contains	the	point	of	intersection	of	the	diagonals	of
rectangle	EFGH.	We	shall	let	AD	=	BC	=	a,	AB	=	CD	=	b,	and	AS	=	l.	Also,	KS
=	h.	There	exists	a	value,	q,	where	0	<	q	<	1,	so	that	ES	=	FS	=	ql,	EF	=	GH	=	q	·
a,	LS	=	q	·	h,	and	AE	=	DF	=	(1	–	q)l,	KL	=	(1	–	q)h.	We	then	get	4h2	+	b2	=	4l2	–
a2.

Pyramid	BCDF:	Volume	=	

Pyramid	ADFEB:	Volume	=	

When	we	add	these	two	volumes,	we	get	the	lower	portion	of	the	figure.

Since	we	want	 this	volume	to	be	half	 the	volume	of	 the	full	 figure,	we	get	 the

following:	

This	is	equivalent	to	q2	+	q	–	1	=	0,	where	the	positive	root	is	the	now-familiar	 .
This	establishes	that	points	E	and	F	partition	pyramid	edges	AS	and	DS	into	the
golden	section.



FOR	CHAPTER	6:

Connection	between	the	Divergence	Angle
of	the	Real	Number	λ,	and	the	Number
of	Visible	Spirals	(Contact	parastichy)

The	convergents	 	are	the	best	rational	approximations	of	λ,	that	is,	all	further
fractions	with	 a	 denominator	 smaller	 than	Qk+1–	1	 approximate	λ	more	poorly

than	 	 (Lagrange's	 theorem)10—see	 also	 Rosen.11	 In	 the	 case	 of	 the	 golden
angle,	Lagrange's	theorem	can	be	proven	in	an	elementary	fashion.12

Suppose	 we	 represent	 the	 fraction	 	 as	 the	 point	 (x,	 y)	 of	 the	 fundamental
lattice	Z	 ×	Z,	 we	 then	 obtain	 the	 following	 geometric	 interpretation	 of	 Felix
Klein's	(1849–1925)13	development	of	 the	continuous	fraction.	The	points	with
integer	 coordinates,	 which	 lie	 closer	 to	 a	 straight	 line	 (with	 the	 slope	 λ	 in	 a
restricted	band	 [0,	x]	×	R	 of	 the	 fundamental	 lattice	Z	 ×	Z)	 than	 the	previous
points,	are	then	essentially	the	points	with	the	convergence	coordinates	(Qk,	Pk)
(fig.	A-12).



Because	the	convergents	 	are	also	the	best	rational	approximations	of	λ,	then	λ
·	Qk	≈	Pk,	and	the	value	of	the	angle	αk	:	=	α	·	Qk	–	360°	·	Pk	is	smaller	than	all	αn
=	α	·	n	–	360°	·	m,	with	n	<	Qk+1	–	1.	The	additional	growth	Δrn	=	rn+1	–	rn	of	the
radial	component	 	of	 the	points	generated	by	the	Vogel	model	decreases
monotonically.	 For	 this	 reason,	 an	 area	 exists	 (see	 below)	 where	 the	 next
neighbor	 of	 the	 point	 X(Qk)	 is	 the	 point	 X(2Qk),	 and	 the	 point	 X(Qk	 +	 1)	 is
followed	by	 the	 point	X(2Qk	 +	 1),	 and	 so	 on.	 In	 this	way,	Qk	 spirals	with	 the
same	rotational	direction	are	generated	as	well	as	 the	arithmetic	progression	of
the	indexes	of	the	points	on	the	spiral.14
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14.	From	past	discussions,	we	have	sin	 	and	then

15.	Note	that	this	form	is	often	seen:	
16.	We	will	use	this	form	of	the	value	of	a	in	chapter	5:
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1516),	a	friend	of	Luca	Pacioli.

21.	A	polyhedral	angle	is	an	angle	formed	by	three	or	more	planes	meeting	at
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Chapter	5:	Unexpected	Appearances	of	the	Golden	Ratio
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	where	s	is	the	semiperimenter.	In	the	right
	

triangle	CDF,	is	 ,	and	by	the	Pythagorean	theorem,
	

	
Then	r	=
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Chapter	7:	The	Golden	Ratio	and	Fractals

1.	This	chapter	was	written	by	Dr.	Ana	Dias,	associate	professor,	Department
of	 Mathematics,	 Central	 Michigan	 University.	 Chapter	 and	 all	 images/figures
reprinted	courtesy	of	Dr.	Ana	Dias.

2.	 The	 square	 fractal	 is	 described	 by	Hans	Walser	 in	 his	 book	The	Golden
Section	 (first	 American	 edition	 published	 by	 the	Mathematical	 Association	 of
America,	2001).

Appendix:	Proofs	and	Justifications	of	Selected	Relationships

1.	 This	 is	 done	 by	 considering	 the	 value	 of	 each	 portion	 of	 the	 continued
fraction	up	to	each	plus	sign,	successively.

2.	The	number	e	is	the	base	of	the	system	of	natural	logarithms.	It	is	the	limit
of

as	 n	 increases	 without	 limit.	 The	 symbol	 e	 was	 introduced	 by	 the	 Swiss



mathematician	 Leonhard	 Euler	 (1707–1783)	 in	 1737.	 In	 1761,	 the	 German
mathematician	 Johann	 Heinrich	 Lambert	 (1728–1777)	 showed	 that	 e	 is
irrational,	and	in	1873,	the	French	mathematician	Charles	Hermite	(1822–1901)
proved	e	is	a	transcendental	number.	A	transcendental	number	is	a	number	that
is	 not	 the	 root	 of	 any	 integer	 polynomial	 equation,	 meaning	 that	 it	 is	 not	 an
algebraic	 number	 of	 any	 degree.	 This	 definition	 guarantees	 that	 every
transcendental	number	must	also	be	irrational.

3.	For	more	on	the	various	representations	of	π,	see	A.	S.	Posamentier	and	I.
Lehmann,	 π:	 A	 Biography	 of	 the	World's	Most	Mysterious	 Number	 (Amherst,
NY:	Prometheus	Books,	2004).

4.	 Dietrich	 Reuter,	 “‘Goldene	 Terme,’	 nicht	 nur	 am	 regulären	 Fünf-und
Zehneck,”	Praxis	der	Mathematik	26	(1984):	298–302.	Reuter	chooses	another
method	to	solve	the	problem.
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AD	=	d	(diagonal	of	the	pentagon,	or	side	of	the	pentagram),
AM	=	r	(radius	of	the	circumscribed	circle),
FM	=	ρ	(radius	of	the	inscribed	circle),
AF	 =	 b	 (pentagon	 height;	 also	 bisects	 the	 opposite	 side,	 and	 bisects	 the
opposite	angle),
AG	 =	 c	 (height,	 perpendicular	 bisector	 and	 angle	 bisector	 for	 ΔABE,	 and
ΔARS),
AR	=	e	(exterior	portion	of	pentagram	side),	and
RS	=	f	(side	of	smaller	pentagon).	See	figure	4-57.
6.	Duane	W.	DeTemple,	“A	Pentagonal	Arch,”	Fibonacci	Quarterly	12,	no.	3

(1974):	S235–36.	However,	our	development	differs	from	the	one	presented	by
DeTemple.

7.	The	law	of	cosines	is	a	relationship	among	the	angles	and	sides	of	triangle,
that	 is:	 c2	 =	 a2	 +	 b2	 –	 2ab	 cos	 C.	 When	 the	 angle	 C	 is	 90°,	 we	 get	 the
Pythagorean	theorem,	since	the	cos	90°	=	0.

8.	Paul	S.	Bruckman,	“A	Piece	of	Pi,”	Fibonacci	Quarterly	39,	no.	1	(2001):
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9.	These	trigonometric	formulas	are	to	be	recalled	for	this	item.
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sin2	x	+	cos2	x	=	1
10.	Joseph-Louis	de	Lagrange	(1736–1813).
11.	 K.	 H.	 Rosen,	Elementary	 Number	 Theory	 and	 Its	 Applications	 (Menlo

Park,	CA:	Addison-Wesley,	1988).
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Teubner,	1907).

14.	 K.	 Azukawa	 and	 T.	 Yuzawa,	 “A	 Remark	 of	 the	 Continued	 Fraction
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Index

1.61803	(recognized	value	of	golden	ratio),	14
expansion	of

expanded	to	one	thousand	places,	50–51
table	showing	history	of,	52

as	a	Fibonacci-related	ratio,	105,	301
found	in	golden	section	constructions,	19,	20,	24,	27,	29,	30,	32,	33,	35

number	of	places	 	has	been	computed	to,	52
numerical	value	and	properties	of,	49–79
relationship	to	Fibonacci	numbers,	65–67,	72–74,	78
seen	in	the	drawing	of	the	Vitruvian	Man,	47
See	also	golden	ratio;	golden	section

4,	using	four	4s	to	represent	natural	numbers,	252–54
e	(Euler's	number),	299–300

	14–15.	See	also	golden	section
λ	(lambda),	330–31

	(phi)

creating	a	 	Day	on	January	6,	254
as	the	geometric	division	of	a	segment.	See	golden	section

number	of	places	 	has	been	computed	to,	52
as	a	numerical	value.	See	golden	ratio

π	(pi),	78–79,	299–301
celebration	of	π	Day,	254

	(as	best	approximation	of	real	number	l),	330–31
	(psi)	(golden	angle),	136.	See	also	angles,	golden	angles

38
irrationality	of,	53
and	the	ratio	of	Lucas	numbers	to

Fibonacci	numbers,	73
replacing	with	a	Fibonacci	number,	69

x2	+	x	–	1	=	0	(golden	equation),	15,	27,	43
acute	triangles.	See	triangles,	acute	triangles



Adler,	I.,	264
Adventures	of	Alice	in	Wonderland,	The	(Carroll),	221
Aeonium	tabuliforme,	Fibonacci	spiral	pattern	found	in,	255–56
Airy,	Hubert,	265
almond,	divergence	angle	in,	258
Ammann,	Robert,	117
angles

divergence	angle,	257–58
and	plant	growth,	260–63

of	the	real	number	λ	and	number	of	visible	spirals,	330–31
golden	angles,	136

and	Fibonacci	numbers	found	in	the	plant	kingdom,	257–60,	263
found	in	scale	insects,	263
spiral	patterns	generated	with	the	Vogel	model	for,	260

apical	ring,	264
arbelos	[shoemaker's	knife],	209–13

area	of,	212
golden	ratio	arbelos,	210

Archimedean	spiral,	109
Archimedes,	78,	209
Art	of	Prosody	[Chandahs tras]	(Pingala),	56
Atela,	Pau,	266

beech,	divergence	angle	in,	258
Béothy,	Étienne,	48
Berg,	M.,	52
Bernoulli,	Daniel,	69
Bernoulli,	Jakob,	109
Bernoulli,	Nicolaus,	69
Better	Way	to	Construct	the	Sunflower	Head,	A	(Vogel),	259
bifurcation	and	fractals,	269–73
Binet,	Jacques-Philippe	Marie,	68,	69
Binet	formula,	68–79

proof	of,	301–302
Bosia,	Gabries,	29
botany	and	the	golden	ratio,	255–67,	294

California	as	the	Golden	State,	188–89
capitulum	[flower	heads],	255,	259
Carroll,	Lewis.	See	Dodgson,	Charles	Lutwidge



Chandahs tras	[Art	of	Prosody]	(Pingala),	56
Cheops	(Khufu),	Pyramid	of	(use	of	golden	ratio),	29–43
chords

in	a	semicircle,	210–11
smaller	circle	partitioning	chord	of	a

larger	circle	creating	golden	section,	205–207
two	intersecting	chords	of	a	circle	are	equal,	23,	26
use	of	to	construct	a	golden	segment,	27–28

circles
chords

smaller	circle	partitioning	chord	of	a	larger	circle	creating	golden	section,	205–207
two	intersecting	chords	of	a	circle	are	equal,	23,	26
use	of	chord	and	circle	to	construct	a	golden	segment,	27–28

circles	placed	in	a	hexagram	pattern,	199–202
circles	placed	in	a	pentagon	pattern,	202–205
circumradius	of	circumscribed	circles,	148

concentric	circles,	use	of	to	construct	a	golden	segment,	29–30
congruent	circles

pattern	formed	with	five	concentric	circles,	199–202
use	of	to	construct	a	golden	segment,	30

continuous	reappearance	of	golden	section	in	circles,	195–96
equicircles,	131
finding	the	golden	angle	in,	257
and	the	golden	ellipse,	161–62
golden	radii,	130–36
golden	sections	in	yin	and	yang	symbol,	213–15
inscribed	circle	in	a	rhombus,	114–16
isosceles	trapezoid	with	an	inscribed	circle	revealing	golden	ratio,	245–46,	326–28
lune	of	a	circle,	205,	206
square	with	circle	inscribed	tangent	to	two	sides	revealing	golden	ratio,	229–33
tangent	circles

tangential	circles	and	phyllotactic	lattice,	263
use	of	tangent	circles	to	construct	a	golden	segment,	31–32

use	of	to	construct	a	golden	segment,	20–21,	29–33,	35–37
use	square	and	circle	to	construct	a	golden	segment,	26–27
using	line	segments	and	circle	to	create	golden	section,	195–96
See	also	semicircles

circumradius,	148,	179
concentric	circles.	See	circles



congruent	circles.	See	circles
constructing	the	golden	section.	See	golden	section,	construction	of
contact	parastichies,	260

connection	between	divergence	angle	of	real	number	λ	and	number	of	visible	spirals,	330–31
continued	fractions,	296–301

convergents	of,	59
use	of	with	golden	ratio	and	Fibonacci	numbers,	61–67,	260

defining,	58–60
infinite	continued	fraction,	61–62,	78
and	Lucas	numbers,	70
use	of	with	golden	ratio	and	Fibonacci	numbers,	61–67

convergents,	297
of	continued	fractions,	59

use	of	with	golden	ratio	and	Fibonacci	numbers,	61–67,	260

convergents	 	as	best	approximation	of	real	number	λ,	330–31
Conway,	John	H.,	119
Corner,	E.	J.	H.,	264
Couder,	Yves,	265
crassulacean	succulent,	Fibonacci	spiral	pattern	found	in,	255–56
cross

golden	section	in	a	cross	of	congruent	squares,	224–25
golden	section	in	the	Cross	of	Lorraine,	225–29

cubes	and	cuboids.	See	hexahedrons	(cubes)
curiosities	and	the	golden	ratio.	See	golden	ratio,	unusual/unexpected	appearances	of
cylinder	lattice,	261–63

dandelions,	Fibonacci	spiral	pattern	found	in,	255–56
darts	as	rhombus-shaped	tiles,	119–21
da	Vinci,	Leonardo,	46–47,	178
Decatur,	Illinois,	representing	golden	section	intersection,	188–89
De	Divina	Proportione	[The	Divine	Proportion]	(Pacioli),	14,	45–46,	178
de	Gaulle,	Charles,	226
Descartes,	René,	109
diagonals

in	construction	of	golden	sections,	20,	26
and	fractals,	269,	283,	284
of	a	golden	cuboid,	163
of	golden	rectangles

comparing	diagonals	to	a	golden	rectangle,	85–87



finding	the	length	of,	82–83
and	perpendiculars	to	the	diagonal,	93–95
two	congruent	rectangles,	95–96,	306–308
use	of	semicircles	to	find	golden	ratio	along,	92–93

of	an	inscribed	cube,	177,	315–16
of	an	inscribed	quadrilateral,	216–17,	315
of	an	inscribed	trapezoid,	217
and	the	paper-folding	exercise,	218–21
and	parallelograms,	88
of	pentagons	and	pentagrams,	139,	141,	142,	144–45,	157,	170,	180,	183,	312–13

irrationality	of	 	shown,	53
ratio	of	the	diagonal	of	a	regular	petagon,	137,	145–47

and	rectangles
Charles	Dodson's	exercise,	222
of	reciprocal	rectangles,	84–85

of	a	rhombus,	112,	114,	115,	120,	204
golden	rhombus	diagonals	are	in	the	golden	ratio,	113,	116–19
and	the	side	of	a	pentagon,	143–44

of	a	right	pyramid,	328–29
and	spirals,	110

dilation
dilation	of	a	cube,	286–87
linear	dilation,	285,	286,	288,	291

dimension
calculating	dimensions	of	fractal	objects,	285
concept	of,	285,	288

divergence	angle.	See	angles,	divergence	angle
Divine	Proportion,	The	[De	Divina	Proportione]	(Pacioli),	14,	45–46,	178
divine	section	[sectio	divina].	See	golden	ratio
dodecahedrons,	167,	174,	175,	179–83

front	view	of,	181
in	portrait	of	Luca	Pacioli,	178
rooflike	cap	found	on,	177,	315–16
side	view	of,	182–83
stellated	dodecahedron,	187–88

Dodgson,	Charles	Lutwidge,	221
Douady,	Stéphane,	265
dual	polyhedra,	174–83
Dürer,	Albrecht,	283



e	(Euler's	number),	299–300
Elements	(Euclid),	33–34,	43–44,	57,	66,	167
ellipse,	golden,	161–63
equiangular	spiral,	109
equicircles,	131
equilateral	triangle.	See	triangles,	equilateral
equiradii,	131
Euclid,	178

and	construction	of	a	golden	segment	(method	15),	34–35
Elements	(Euclid),	33–34,	43–44,	57,	66,	167
first	mentioning	golden	ratio,	43–44

Euler,	Leonhard,	69,	168
Euler's	number	(e),	299–300
exradii	of	escribed	circles	of	a	triangle,	133

Faust	(Goethe),	138
Fee,	G.	J.,	52
Fibonacci	[aka	Leonardo	of	Pisa],	48,	56–58
Fibonacci	numbers,	12,	56–58

and	the	Binet	formula,	68–79
Fibonacci-Lucas	spiral,	129–30
and	flag	dimensions,	138–39
found	in	a	Fibonacci-Lucas	spiral,	129–30
found	in	Dodgson's	missing	area	problem,	222–23
found	in	the	state	of	Illinois,	188–89
and	the	golden	angle,	257–60
and	golden	strings,	251
and	Lucas	numbers,	73
and	the	plant	kingdom,	255–56,	263,	264,	266–67

powers	of	 	extended,	57–66	proof	of,	296
ratios	of	consecutive	Fibonacci	numbers,	67
and	reciprocals

reciprocal	of	two	consecutive	Fibonacci	numbers,	67–69,	294
reciprocals	of	Fibonacci	numbers	in	the	position	of	powers	of	2,	75

relationship	to	the	golden	ratio,	48,	294

powers	of	 	extended,	57–67
flags

flag	dimensions,	138–39
flag	of	Free	France	using	Cross	of	Lorraine,	226



flags	using	a	five-pointed	star,	138
flower	heads	[capitulum],	255,	259
formulas

for	the	golden	ratio,	14,	15–16,	27,	43	reciprocal	of	the	golden	ratio,	15
See	also	Binet	formula;	Heron's	formula	for	area	of	a	triangle;	Lagrange's	theorem;	Ptolemy's	theorem;
Pythagorean	theorem;	quadratic	formula	fractals	and	the	golden	ratio,	269–92,	294

calculating	dimensions	of	fractal	objects,	285–91
construction	of	the	square	fractal,	276–78
irrational	dimension	as	a	trait	among	fractals,	289
perimeter	of,	289–90
reciprocals,	275,	276

fractions.	See	continued	fractions

geometry
and	applications	of	the	golden	ratio,	12
and	construction	of	a	golden	segment

method	1	(using	a	rectangle),	16–18
method	2	(using	a	triangle),	18–19
method	3	(using	adjacent	squares),	19–20
method	4	(using	a	circle	and	congruent	squares),	20–21
method	5	(using	a	circle	and	a	square),	21–22
method	6	(using	an	equilateral	triangle),	22–24
method	7	(using	an	isosceles	triangle	and	a	square),	24–25
method	8	(using	a	circle,	a	square,	and	an	equilateral	triangle),	26–27
method	9	(using	a	circle	and	a	chord),	27–28
method	10	(using	a	right	triangle),	28–29
method	11	(using	concentric	circles),	29–30
method	12	(using	adjacent	congruent	circles),	30
method	13	(using	circles	tangent	to	each	other),	31–32
method	14	(using	circles	on	a	coordinate	grid),	32–33
method	15	(Euclid's	using	right	triangle),	34–35
method	16	(using	five	circles),	35–37

See	also	specific	geometric	figures,	e.g.,	rectangles,	squares,	triangles,	etc.
Giza,	Great	Pyramid	at	(use	of	golden	ratio),	29–43
Goethe,	Johann	Wolfgang	von,	138

golden	equation	(x2	+	x	–	1	=	0),	15,	27,	43
golden	point,	82
golden	ratio

components	of,	13–16



construction	of,	293.	See	also	golden	section,	construction	of	and	flag	dimensions,	138–39
formulas,	14–16,	27,	43	reciprocal	of	the	golden	ratio,	15
using	quadratic	formula,	11
and	fractals,	269–92,	294
construction	of	the	square	fractal,	276–78
geometric	representation	of.	See	golden	sequence
history	of,	14,	39–48,	293
irrationality	of,	52–56

numerical	value	of,	14,	294.	See	also	1.61803	(recognized	value	of	golden	ratio)	number	of	places	 	has
been	computed	to,	52

trigonometric	functions	and	numerical	representation	of	 ,	79
using	roots	that	are	not	complex	numbers,	76–77
and	the	value	of	π,	78–79

and	pentaflakes
creation	of,	283–85

in	the	plant	kingdom,	255–67,	294

power	of	 	extended	using	Fibonacci	numbers,	57–66
proof	of,	296

producing	a	right	triangle	with	side	lengths	related	to	 ,	235–37
properties	of,	49–79

and	the	Binet	formula,	68–79
extension	of	powers	by	using	Fibonacci	numbers,	57–67,	296

ratio	of	areas	of	parallelograms	(one	inside	the	other)	showing	 :1,	241–43

rectangular	“spiral,”	using	a	right	triangle	with	side	lengths	related	to	 	to	produce,	237–41
relationship	to	Fibonacci	numbers,	294
terms	used	for,	13–14,	16

golden	ratio	as	term	to	refer	to	numerical	value	of	 ,	16
unusual/unexpected	appearances	of,	191–254

curiosity	1	(inscribed	equilateral	triangle	in	an	equilateral	triangle),	191–93,	320–23

curiosity	2	(triangles	constructed	with	sides	having	lengths	xn,	xn+1,	xn+2),	191–93
curiosity	3	(continuous	reappearance	of	golden	section	in	circles),	195–96
curiosity	4	(using	line	segments	and	a	circle	to	create	golden	section),	195–96
curiosity	5	(finding	golden	sections	in	a	hexagram),	197–99
curiosity	6	(beauty	of	circles	in	hexagram	pattern),	199–202
curiosity	7	(circles	in	a	pentagon	pattern),	202–205
curiosity	8	(smaller	circle	partitioning	chord	of	a	larger	circle	creating	golden	section),	205–207
curiosity	9	(congruent	semicircles	within	a	square	producing	reciprocal	of	golden	ratio),	207–209



curiosity	10	(using	a	golden	section	to	construct	other	golden	sections	using	the	arbelos),	209–13
curiosity	11	(golden	sections	found	in	yin	and	yang	symbol),	213–15
curiosity	12	(Ptolemy's	theorem	applied	to	a	pentagon),	216–18
curiosity	13	(paper-folding	exercise),	218–21
curiosity	14	(solving	Dodgson's	missing	area	problem	using	the	golden	ratio),	221–24	curiosity	15

(golden	section	in	a	cross	of	congruent	squares),	224–25
curiosity	16	(finding	golden	section	in	the	Cross	of	Lorraine),	225–29
curiosity	17	(square	with	circle	inscribed	tangent	to	two	sides),	229–33
curiosity	18	(square	partitioned	into	four	congruent	trapezoids	and	a	smaller	square),	233–34
curiosity	19	(rectangle	partitioned	into	four	triangles),	235,	323–24

curiosity	20	(producing	a	right	triangle	with	side	lengths	related	to	 ),	235–37

curiosity	21	(using	a	right	triangle	with	side	lengths	related	to	 to	produce	a	rectangular	“spiral”),
237–41

curiosity	22	(ratio	of	areas	of	parallelograms	showing	 :1),	241–43
curiosity	23	(partitioning	isosceles	and	nonisosceles	trapezoids),	243–45,	325–26
curiosity	24	(isosceles	trapezoid	with	an	inscribed	circle),	245–46,	326–28
curiosity	25	(right	pyramid	with	a	rectangular	base),	246–47,	328–29
curiosity	26	(use	of	perpendiculars	on	a	triangle	to	create	a	golden	section),	247–49
curiosity	27	(creating	golden	strings),	249–52
curiosity	28	(representing	natural	numbers	using	only	four	4s),	252–54

use	of	 	to	mean	golden	ratio	in	honor	of	Phidias,	44
See	 also	 under	 specific	 types,	 e.g.,	 angles,	 golden	 angles,	 hexahedrons,	 golden	 cuboid,	 spirals,	 golden
spirals,	triangles,	golden	triangles,	etc.
golden	section

appearing	in	a	golden	cuboid,	164,	165
applied	to	states	of	California	and	Illinois,	188–89
construction	of	method	1	(using	a	rectangle),	16–18

method	2	(using	a	triangle),	18–19
method	3	(using	adjacent	squares),	19–20
method	4	(using	a	circle	and	congruent	squares),	20–21
method	5	(using	a	circle	and	a	square),	21–22
method	6	(using	an	equilateral	triangle),	22–24
method	7	(using	an	isosceles	triangle	and	a	square),	24–25
method	8	(using	a	circle,	a	square,	and	an	equilateral	triangle),	26–27
method	9	(using	a	circle	and	a	chord),	27–28
method	10	(using	a	right	triangle),	28–29
method	11	(using	concentric	circles),	29–30
method	12	(using	adjacent	congruent	circles),	30



method	13	(using	circles	tangent	to	each	other),	31–32
method	14	(using	circles	on	a	coordinate	grid),	32–33
method	15	(Euclid's	using	right	triangle),	34–35
method	16	(using	five	circles),	35–37

found	in	golden	pyramid,	184–85
found	in	pentagons	and	pentagrams,	141–42
found	in	rhombicuboctahedron,	178
golden	section-related	relationships	in	dodecahedrons,	179–80
and	sides	of	a	golden	triangle,	122–23
terms	used	for,	13–14,	16

golden	section	as	term	for	geometric	division	of	a	segment	into	ratio	of	 ,	16
trigonometric	relationships	in,	316–19
unusual/unexpected	appearances	of	 curiosity	3	 (continuous	 reappearance	of	golden	 section	 in	circles),
195–96

curiosity	4	(using	line	segments	and	circle	to	create	golden	section),	195–96
curiosity	7	(circles	in	a	pentagon	pattern),	202–205
curiosity	8	(smaller	circle	partitioning	chord	of	a	larger	circle	creating	golden	section),	205–207
curiosity	10	(using	a	golden	section	to	construct	other	golden	sections	using	the	arbelos),	209–13
curiosity	11	(golden	sections	found	in	yin	and	yang	symbol),	213–15
curiosity	15	(golden	section	in	a	cross	of	congruent	squares),	224–25
curiosity	16	(finding	golden	section	in	the	Cross	of	Lorraine),	225–29
curiosity	23	(partitioning	isosceles	and	nonisosceles	trapezoids),	243–45,	325–26
curiosity	25	(right	pyramid	with	a	rectangular	base),	246–47,	328–29
curiosity	26	(use	of	perpendiculars	on	a	triangle	to	create	a	golden	section),	247–49

use	of	term	for	geometric	division	of	a	segment	into	the	ratio	of	 ,	16
golden	sequence,	91–92,	251

in	a	golden	triangle,	125–27
“Golden	State,”	188–89
golden	strings,	creating,	249–52
goldpoint	(golden	point),	82
Golé,	Christophe,	266
Gourdon,	X.,	52
Great	Pyramid	at	Giza	(use	of	golden	ratio),	39–43

Harmonice	Mundi	(Kepler),	187
Hemacandra,	 c rya,	56
Hemiunu,	39
Herodotus,	43
Heron's	formula	for	area	of	a	triangle,	134



Herz-Fischler,	Roger,	48
hexagons,	155–56

beauty	of	circles	placed	in	a	hexagram	pattern,	199–202
finding	golden	sections	in	hexagrams,	197–99

hexahedrons	(cubes),	167,	174
dilation	of	a	cube,	286–87
golden	cuboid,	163–67,	175

area	of	faces	of,	164
four	types	of	rectangular	solids	found	in,	165–67

icosahedron	inscribed	in	a	cube,	178–79
rooflike	cap	covering	an	inscribed	cube	in	a	dodecahedron,	177,	315–16

Hippasus	of	Metapontum,	137–38
Hofmeister,	Wilhlem,	265
Hotton,	Scott,	266

icosahedrons,	167,	169–71,	174,	175–76
golden	rectangles	within,	173–74,	176–77
inscribed	in	a	cube,	178–79

Illinois	as	an	intersection	point	of	golden	sections,	188–89
inradius	of	a	triangle,	132
Irlande,	A.,	52
irrational	numbers,	52,	137

irrational	dimension	as	a	trait	among	fractals,	289
reciprocal	of	the	golden	ratio	as,	79

and	the	value	of	 ,	52–56,	294
isosceles	trapezoid.	See	trapezoids,	isosceles	trapezoid
isosceles	triangle.	See	triangles,	isosceles	triangle

Jacob,	Simon,	57

Kepler,	Johannes,	12,	14,	51,	67,	187,	264
Kepler	triangle,	89
Khufu	(Cheops),	Pyramid	of	(use	of	golden	ratio),	29–43
kites

found	in	pentagons	and	pentagrams,	145
as	rhombus-shaped	tiles,	119–21

Kondo,	S.,	52

	14–15.	See	also	golden	section
λ	(lambda),	330–31



Lagrange's	theorem,	330
lambda	(λ),	330–31
leaf	primordia,	angles	of,	263,	265
Le	Corbusier,	48
Leonardo	da	Vinci,	46–47,	178
Leonardo	of	Pisa	[aka	Fibonacci],	48,	56–58
Liber	Abaci	(Fibonacci),	48,	56–58
lime,	divergence	angle	in,	258
Lincoln,	Abraham,	34
linear	dilation,	286,	288
logarithmic	spiral.	See	spirals,	logarithmic
Lorraine,	Cross	of,	225–29
Lucas,	Edouard,	48,	70
Lucas	numbers,	70–73

and	Fibonacci	numbers,	73
found	in	a	Fibonacci-Lucas	spiral,	129–30
Lucas	spirals	found	in	the	plant	kingdom,	265,	266
relationship	to	the	golden	ratio,	48

lune	of	a	circle,	205,	206

Maestlin,	Michael,	51
Markowsky,	George,	48
m tr meru	[Mountain	of	Cadence],	56
miraculous	spiral	[spira	mirabilis],	109
Moivre,	Abraham	de,	69
morphological	adaptation,	263–67
Mountain	of	Cadence	[m tr meru],	56

natural	numbers
Fibonacci	number	for	any	natural	number,	68,	69,	296
new	growth	leaves	adhering	to,	261
ratio	of	diagonal	to	the	side	of	a	pentagon,	137
using	four	4s	to	represent,	252–54

nautilus	shell,	111
Neveux,	Marguerite,	48
Niemeyer,	Jo,	48
numbers.	See	irrational	numbers;	natural	numbers;	rational	numbers

oak,	divergence	angle	in,	258
obtuse	triangles.	See	triangles,	obtuse	triangles



octahedrons,	167,	171–72,	174
Ohm,	Martin,	14
oval	shape.	See	ellipse,	golden

Pacioli,	Luca,	14,	44–45,	178
Pagliarulo,	S.,	52
parallelogram,	112

in	paper-folding	exercise,	218–21

ratio	of	areas	of	parallelograms	(one	inside	the	other)	showing	 :1,	241–43
See	also	rhombus

parastichy	numbers,	260–63
connection	between	divergence	angle	of	real	number	λ	and	number	of	visible	spirals,	330–31

Parthenon	(as	a	golden	rectangle),	44–45
pear,	divergence	angle	in,	258
Pedoe,	Dan,	48
Penrose	tessellations	(work	of	Ammann),	117–19
pentaflakes,	291

creation	of,	283–85
dimensions	of,	291–92

pentagons	and	pentagrams
applying	Ptolemy's	theorem	to,	216–18
area	of,	152–55
as	base	for	golden	pyramid,	184
circles	in	a	pentagon	pattern,	202–205
construction	of,	156–58
dissecting	into	obtuse	and	acute	golden	triangles,	279
found	in	dodecahedrons,	179,	181
found	in	icosahedrons,	171
and	fractals,	279,	280–85

and	pentaflakes,	283–85,	291–92
golden	pentagon	found	in	yin	and	yang	symbol,	215–16
golden	ratio	found	in,	137–55,	158–60,	308–311
in	paper-folding	exercise,	218–21
pentagon's	rotation,	158–59

justification	of	conclusions,	311–15
and	polygon	constructions,	155–58
presence	of	pentagrams	in	today's

society,	138–39
ratio	of	diagonals	to	a	side,	144–45,	170



ratio	of	the	diagonal	of	a	regular
petagon,	137

pentagram.	See	pentagons	and	pentagrams

phi	( )

creating	a	 Day	on	January	6,	254
as	the	geometric	division	of	a	segment.	See	golden	section

number	of	places	 has	been	computed	to,	52
as	a	numerical	value.	See	golden	ratio

Phidias,	44–45
phyllotactic	lattice,	263
phyllotaxis	and	the	golden	ratio,	255–67,	294

causal	model	of	phyllotaxis,	263–67
pi	(π),	78–79,	299–301

celebration	of	π	Day,	254
Pingala,	56

	(as	best	approximation	of	real	number	l),	330–31
plant	kingdom	and	the	golden	ratio,	255–67,	294
Plato,	33
Platonic	solids,	46,	167–68,	174,	188.	See	also	polyhedra	Plouffe,	S.,	52
Poinsot,	Louis,	187
point,	golden,	82
Pollio,	Marcus	Vitruvius,	46
polygons

construction	of,	155–58
polygon	faces	on	polyhedrons,	167,	174
See	also	hexagons;	pentagons	and	pentagrams;	quadrilaterals;	rectangles;	rhombus;	squares;	trapezoids;
triangles	polyhedra

dual	polyhedra,	174–83
golden	polyhedra,	167–83
Kepler-Poinsot	solids,	188
Platonic	solids,	46,	167–68,	174,	188
properties	of,	168
types	of	regular	polyhedra,	167
See	also	dodecahedrons;	hexahedrons	(cubes);	icosahedrons;	octahedrons;	tetrahedrons

primordium	and	Ridley	algorithm,	265
proportion

defining,	13
identifying	pleasing	proportions,	11–12



psi	( )	(golden	angle),	136.	See	also	angles,	golden	angles	Ptolemy	I	(pharaoh),	33
Ptolemy's	theorem,	216–18
pyramids

golden	pyramid	(pentagon	base),	184–89
area	of,	186
height	of,	185
volume	of,	187

right	pyramid	with	a	rectangular	base	revealing	golden	sections,	246–47,	328–29
Pythagorean	theorem,	12

applied	to	Great	Pyramid	of	Giza,	42
and	the	golden	ellipse,	161
and	triangles	within	a	golden	rhombus,	113–14
used	to	find	golden	ratios	in	a	hexagram,	198–99
use	of	in	construction	of	golden	sections,	17,	19,	21,	25,	26,	28–32,	34,	36,	37
use	of	in	finding	height	of	a	golden	pyramid,	185
use	of	in	yin	and	yang	symbol,	214,	215
use	of	to	find	area	of	a	golden	triangle	using	golden	radii,	134
use	of	to	find	golden	ratio	between	hypotenuse	and	shorter	leg	(Kepler	triangle),	89–90
use	of	to	find	golden	ratios	in	golden	rectangles,	85–87,	303–305
use	of	with	perpendiculars	to	the	diagnonal	of	a	golden	rectangle,	93–95
and	the	volume	of	a	golden	cuboid,	163

quadratic	formula
derivation	of,	295–96
used	in	solving	for	golden	ratio,	14
use	of	to	find	reciprocal	of	the	golden	ratio	in	fractals,	275
use	of	with	ratio	of	areas	of	parallelograms,	242

quadrilaterals,	112
found	in	pentagons	and	pentagrams,	141,	143,	145
inscribed	in	a	circle	(Ptolemy's	theorem),	216–17
solving	Dodgson's	missing	area	problem	using	the	golden	ratio,	221–24
See	also	pentagons	and	pentagrams;	rectangles;	rhombus;	squares;	trapezoids

radii
circumradius,	148,	179
equiradii,	131
exradii	of	escribed	circles	of	a	triangle,	133
golden,	130–36
radius	of	a	pentagon	with	a	circumscribed	circle,	148
radius	of	a	triangle,	132



ratio,	golden.	See	golden	ratio
rational	numbers,	52
real	number	λ,	divergence	angle	of	and	number	of	visible	spirals,	330–31
reciprocals

and	Fibonacci	numbers
reciprocal	of	two	consecutive

Fibonacci	numbers,	67–69,	294
reciprocals	of	Fibonacci	numbers	in	the	position	of	powers	of	2,	75

of	the	golden	ratio,	12,	15,	50,	51,	75,	153,	161
congruent	semicircles	within	a	square	producing	reciprocal	of	a	golden	ratio,	207–209
finding	in	fractals,	275
finding	the	reciprocal	of	the	golden	ratio,	15
in	fractals,	275,	276
as	irrational	numbers,	79,	294
use	of	reciprocal	of	to	construct	a	golden	section,	19–21

reciprocal	of	a	reciprocal,	59
reciprocal	rectangles,	84,	105
use	of	to	determine	dimensions	of	Cheops	pyramid,	43

rectangles
finding	golden	ratio	in	rectangle	partitioned	into	four	triangles,	235,	323–24
found	in	Dodgson's	missing	area	problem,	221–24
golden	rectangles,	11,	81–102,	176

area	of,	83
as	basis	for	golden	spiral,	102–108
construction	of,	16–18
creating	golden	spiral	from	squares	within	a	golden	rectangle,	104–108,	110
determining	areas	of	squares	within,	97–103
finding	along	length	of	hypotenuse	of	a	right	triangle,	90
finding	golden	ratios	within,	85–87,	303–305
finding	the	length	of	the	diagonal,	82–83
found	in	icosahedrons,	173–74
inscribed	into	a	square,	87–89

method	for	constructing	line	segments	of	lengths	 ,	 2,	 3	&,	91–92
and	perpendiculars	to	the	diagonal,	93–95
providing	maximum	 area	 formed	 by	 two	 congruent	 rectangles	when	 they	 are	 golden	 rectangles,

95–96,	306–308
reciprocal	rectangles,	84,	105
solid	form	of.	See	cubes,	golden	cuboid
use	of	semicircles	to	find	golden	ratio	along	diagonals,	92–93



rectangular	spiral,	creation	of	using	a	right	triangle	with	side	lengths	related	to	 	to	produce,	237–41
rhombicubocatahedron,	178
rhombus

found	in	circles	in	a	pentagon	pattern,	204
found	in	pentagons	and	pentagrams,	143–44
golden	rhombus,	112–21

area	of,	113–16
diagonals	of	are	in	the	golden	ratio,	116–19

rhombic	form	of	pomegranate	seeds,	264–65
Ridley,	J.	N.,	264
Ridley	algorithm,	265–66

creating	spiral	patterns,	266
right	pyramid.	See	pyramids,	right	pyramid
right	triangle.	See	triangles,	right	triangle,
root	mean	square,	243–44,	326

San	Marco	cathedral,	187
Schimper,	Karl	Friedrich,	258
Schwendener,	Simon,	264
Sebah,	P.,	52
sectio	divina	[divine	section].	See	golden	ratio
section,	golden.	See	golden	ratio
self-similarity,	285,	288
semicircles

chords	in	a	semicircle,	211
congruent	semicircles	within	a	square	producing	reciprocal	of	a	golden	ratio,	207–209
golden	sections	in	yin	and	yang	symbol,	213–15
use	of	arbelos	to	create	golden	sections,	209–13
use	of	to	construct	a	golden	segment,	21–22
use	of	to	find	golden	ratio	along	diagonals,	92–93
See	also	circles

semiperimeter,	132,	133,	135,	341
Shallit,	J.,	52
shoemaker's	knife	[arbelos],	209–13

area	of	the	arbelos,	212
golden	arbelos,	210

shoot	apical	meristem,	264
similarity	dimension,	285
Simson,	Robert,	66



solid	figures
Kepler-Poinsot	solids,	188
See	also	polyhedra

spheres
and	dodecahedrons,	179–80,	183
and	Platonic	solids,	168
right	circular	cylinder	inscribed	in,	96
sphere	packing	model,	263

spirals
Archimedean	spiral,	109
divergence	angle	of	the	real	number	λ	and	number	of	visible	spirals,	330–31
equiangular	spiral,	109
and	Fibonacci	numbers	found	in	the	plant	kingdom,	255–56,	265,	266
golden	spiral,	108–12

creating	from	squares	within	a	golden	rectangle,	104–108
creating	golden	spiral	from	a	golden	triangle,	127–30
creating	golden	spiral	from	squares	within	a	golden	rectangle,	110
Fibonacci-Lucas	spiral,	129–30

logarithmic	spiral,	109,	112
generated	from	a	golden	rectangle,	104–108
generated	from	a	golden	triangle,	127–30

and	Lucas	spirals	found	in	the	plant	kingdom,	266
rectangular	spiral,	247–49

creation	of	using	using	a	right	triangle	with	side	lengths	related	to	 	to	produce,	237–41
spiral	patterns	generated	with	the	Vogel	model,	260
spiral	phyllotaxis,	263–64
spira	miabilis	[miraculous	spiral],	109

spira	miabilis	[miraculous	spiral],	109
square	fractal,	construction	of,	276–78
square	roots

and	derivation	of	the	quadratic	formula,	395–96
and	the	golden	ratio

square	root	of	 	(phi),	41

use	of	to	find	 	(phi),	49–50,	52–54,	76,	206,	228,	275,	324,	327
negative	square	roots,	49,	55,	89,	134,	163,	209
positive	square	roots,	31,	76,	134,	206,	242,	324,	329
root	mean	square,	243–44,	326
square	root	of	5	( ),	38,	52–54,	164,	209



irrationality	of,	53
and	the	ratio	of	Lucas	numbers	to	Fibonacci	numbers,	73
replacing	with	a	Fibonacci	number,	69

squares
comparing	diagonals	to	a	golden	rectangle,	85–87
congruent	semicircles	within	a	square	producing	reciprocal	of	a	golden	ratio,	207–209
construction	of,	156
creating	golden	spiral	from	squares	within	a	golden	rectangle,	104–108
determining	areas	of	squares	within	golden	rectangles,	97–103
golden	rectangle	inscribed	in,	87–89
golden	section	in	a	cross	of	congruent	squares,	224–25
solving	Dodgson's	missing	area	problem	using	the	golden	ratio,	221–24
square	partitioned	into	four	congruent	trapezoids	and	a	smaller	square	revealing	golden	ratio,	233–34
square	with	circle	inscribed	tangent	to	two	sides	revealing	golden	ratio,	229–33
used	to	create	Cross	of	Lorraine,	225–29
use	of	to	construct	a	golden	segment,	24–27

using	square	inside	a	semicircle,	21–22
using	three	adjacent	squares,	19–20
using	two	adjacent	squares,	20–21

string,	creating	a	golden,	249–52
Sully,	James,	14
sunflowers,	265

tangent	circles.	See	circles,	tangent	circles
terms	used	for	golden	section/golden	ratio,	13–14,	16

golden	 ratio	 as	 term	 to	 refer	 to	 numerical	 value	 of	 .	 See	 golden	 ratio	 golden	 section	 as	 term	 for
geometric	division	of	a	segment	into	ratio	of	 .	See	golden	section	tessellations,	Penrose,	117–19

kites	and	darts,	119–21
tetrahedrons,	167,	174

as	a	self-dual,	174,	176
Timaeus	(Plato),	167
Togo	flag,	138
trapezoids

found	in	pentagons	and	pentagrams,	145
isosceles	trapezoid

found	in	paper-folding	exercise,	219
with	an	inscribed	circle	revealing	golden	ratio,	245–46,	326–28
in	a	pentagon,	217

partitioning	isosceles	and	nonisosceles	trapezoids	producing	golden	section,	243–45



construction	of,	325–26
square	partitioned	into	four	congruent	trapezoids	and	a	smaller	square	revealing	golden	ratio,	233–34

trees	and	fractals,	269–71
triangle	inequality,	193
triangles

acute	triangles,	golden,	279–81
equilateral	triangle

construction	of,	155
inscribed	equilateral	triangle	in	an	equilateral	triangle	revealing	golden	ratio,	191–93,	320–23
used	to	form	hexagram,	197–99
use	of	to	construct	a	golden	segment,	22–24,	26–27

finding	a	golden	rectangle	along	length	of	hypotenuse	of	a	right	triangle,	90
finding	golden	ratio	in	rectangle	partitioned	into	four	triangles,	235,	323–24

finding	golden	ratio	in	triangles	constructed	with	sides	having	lengths	xn,	xn+1,	xn+2,	191–93
finding	the	golden	ratio	between	hypotenuse	and	shorter	leg	(Kepler	triangle),	89–90
found	in	pentagons	and	pentagrams,	139–40,	143,	144,	151–53
found	within	a	golden	rhombus,	113–14
golden	triangles,	121–30

area	of,	123–25,	132–35
in	golden	pyramids,	184
and	golden	radii	of	circles,	130–36
golden	section	of	the	sides	of,	122–23
golden	sequence,	125–27
obtuse	and	acute	golden	triangles	and	fractals,	279–81

Heron's	formula	for	area	of	a	triangle,	134
isosceles	triangle

area	of,	123–25
found	in	fractals,	278
in	golden	sequence	and	Fibonacci-Lucas	spiral,	125–30
as	a	golden	triangle,	121–23
and	a	pentagon,	157,	312–15
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